Categories
- DATA SCIENCE / AI
- AFIR / ERM / RISK
- ASTIN / NON-LIFE
- BANKING / FINANCE
- DIVERSITY & INCLUSION
- EDUCATION
- HEALTH
- IACA / CONSULTING
- LIFE
- PENSIONS
- PROFESSIONALISM
- THOUGHT LEADERSHIP
- MISC
ICA LIVE: Workshop "Diversity of Thought #14
Italian National Actuarial Congress 2023 - Plenary Session with Frank Schiller
Italian National Actuarial Congress 2023 - Parallel Session on "Science in the Knowledge"
Italian National Actuarial Congress 2023 - Parallel Session with Lutz Wilhelmy, Daniela Martini and International Panelists
Italian National Actuarial Congress 2023 - Parallel Session with Kartina Thompson, Paola Scarabotto and International Panelists
61 views
0 comments
0 likes
0 favorites
The method of least squares Monte-Carlo (LSMC) has become a standard in the insurance and financial sectors for computing the exposure of a company to market risk. The sensitive point of this procedure is the non-linear regression of simulated responses on risk factors. This article proposes a novel approach for this step, based on an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are next locally regressed on corresponding risk factors. A global function of regression is obtained by combining local models and a logistic re-gression. The effciency of the Local Least squares Monte-Carlo (LLSMC) is checked in two illustrations. The first one focuses on butterfly and bull trap options in a Hes-ton stochastic volatility model. The second illustration analyzes the exposure to risks of a participating life insurance.
0 Comments
There are no comments yet. Add a comment.