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Introduction

The least squares Monte-Carlo method (LSMC) of Longstaff and
Schwartz (2001) is a powerful and simple simulation method for
pricing path dependent options.

The LSMC is not only useful for pricing but also for managing risk.
E.g. Bauer et al. (2012) adapt the LSMC method for computing
the required risk capital in the Solvency |l framework.

Sensitive point : the LSMC requires a regression model predicting
the responses (i.e. discounted CF's) as a function of risk factors
(by a polynomial, by a combination of basis functions, by a neural
network).

The main contribution of this article is to propose an alternative

based on local regressions called the local least square
Monte-Carlo, LLSMC.
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Introduction

LLSMC in a nutshell:

1. Create clusters of responses the K-means algorithm and next
to locally regress them on corresponding risk factors.

2. Fit a logistic regression model that a priori estimates the
probability that a combination of risk factors belongs to each
cluster.

3. A global regression function is obtained by weighting local
models by these probabilities.

Main advantages of the LLSMC:
» Robustness,
» High level of interpretability.
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LSMC and risk management

» We consider m risk factors, X; = (Xr(l)ﬁ ...?Xt(m)) o They
t>
drives the value of assets managed by a financial institution.

» The total asset is a function of time and risk factors, A(t, X;).

-----

» P and Q are respectively the real and risk neutral measure.

» Using the cash account (5;),~q as numeraire. A(t,X;) is
given by

d

B;
At Xe) = a(X:)+EY (ZB_;CEI{rerXr) (1)
k=0 "

where a(X;) is directly determined by the value of underlying
risk factors.
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LSMC and risk management

» Let us consider a risk measure denoted by p(.). For risk
management, we aim to calculate p(A(t, X¢)).

» p(.) is e.g. the value at risk (VaR) For a € (0,1), VaR is
defined as

VaR, = max{xeR : P(A(t,X;) <x) < a},

Problem: computing the risk-neutral expectation (1) is a
challenging task because closed-form expressions are usually
not available.

» Solution 1 : simulations in simulations (but
computationally intensive)
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LSMC and risk management
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For each primary sample path of risk factors (under IP), we perform
secondary simulations (under Q). The value of A(t, X;) is obtained
by averaging the sums of discounted cash-flows of secondary

scenarios.
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LSMC and risk management

» Solution 2: Least square Monte-Carlo.Let us denote the
discounted CF's

such that A(t, X;) = a(X;) + EQ (Y1) | Xy).
» V(1) is called the “response” at time t.

» The LSMC method is based on property that the conditional
expectation E¥ (V(7)|X;) is a function h(X,) such that

_ : Q — V()2
h(X:) = argheBTﬁTRm)E ((h(Xf) Y(\r))).
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LSMC and risk management

In practice, it means that we only need a single (or a few)
secondary simulations under Q and to approximate h(X;).
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LSMC and risk management

» The LSMC algorithm consists in simulating a sample denoted
by

S = {(xlryﬂr"'r(x”ryn)} ’ (2)

of n realizations of (X;, Y(t)) and in regressing responses on
risk factors.

» We recall that X; is simulated up to time t under the real
measure [P while the response Y(t) is obtained by simulations
from t up to ty, under the risk neutral measure Q.

> Let us denote by Pj the set of polynomials hi(x) of degree dj,
approximating h(x). It is estimated by least squares
minimization:

B = agmin [ S (v-h) ). @)

hEPh (xj.yi)eS
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LSMC and risk management

> After calibration of h(x) (= EQ (Y(t)|X: = x)), we calculate
3 = a(xi) + h(x;) = A(t,x;).

the approximated value of total assets for a given vector of
risk factors X; = x;.

» The VaR is then the a-quantile of 3;'s.

» Main challenge: find a global polynomial approximation which
captures non-linearities but does not have an unrealistic
behaviour for extreme values of risk factors.
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Local Least Square MC

» Instead of fitting a global polynomial predicting responses
(vi)i—1 _, we partition the domain of Y(t) into K clusters
x (K-means algorithm).

(yk)kzl__ __

» We next define local regression function

qqqqq

hex) = E9(Y(t)|[Xe=x, Y(t) e D) . k=1,....K,

equal to the conditional expectation of responses, knowing
that X; = x and Y(t) € k.

» Using standard properties of the conditional expectation, we
can rewrite the function h(x) as a weighted sum of hy(.):

h(x) = E2 (Y (t) | X; = x)

K
=) Q(Y(t) € Vi | Xe =x) hi(x).
k=1
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Local Least Square MC

» Based on this decomposition, we approximate the K unknown
functions hg(.) by polynomial regression hy of Y(t) € Vx on
risk factors.

N . 2
hie = min Z (y,- — hk(x,-))
M €Ph i yi€Vk

» In a second step, we use a multinomial logistic regression to
estimate the probabilities Q (Y (t) € Vi | X¢) for k =1,.... K.

1+£;-" _' T k=2..K,
@(Y(t)eyk|xr:)() — j:i 4
1+Zj{zze_; : T

where -, (x) is a polynomial of risk factors.
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risk factors : x

2N
Il

a(x) + ) QY (t) € Yj|x) By (%)
f=1
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Local Least Square MC

» It may appear counterintuitive to partition the dataset using
responses instead of risk factors. Two reasons motivate this:

1. local regressions based on hard clusters of risk factors
generate discontinuities in predicted E? (Y(t)| X;) on borders
of clusters.

2. This prevents to observe the Simpson's paradox. This is when
a trend appears in several groups of data but disappears or
reverses when the groups are combined.
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Case study 1: Heston model

» Calculation of the VaR in 1 year of a butterfly option (maturity
2 years) in the Heston model with the LSMC and LLSMC.

» The stock price, noted (S5;),~q, is ruled by a Brownian
diffusion with a stochastic variance, (V;),:

dS. = puS;dt + SV, (pdvv;f +/1- pZdW,f)
dVe = k(7 — Vo) dt + o/ VidWyY .

» Risk factors: the normed stock price and volatility.

This case study is available on our Detranote and will not be presented here
because it’s a financial case study. The case study 2 is an actuarial case study
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Case study 2: Life insurance

» \We compare the performance of LSMC and LLSMC for

assessing the risk of a participating pure endowment

» The stock price indice, the interest rate and the force of
mortality are respectively denoted by (5¢),~q , (1t);~( and

(Ix+t) >0

dSt | St
dre = kr (v (t) — re) dt
dfix+t Fop (Y (T) = fixse)

Soos 0 0 dw?
+( 0 o 0 | awd®
0 0 oxt) dw?

» The matrix X is the (upper) Choleski decomposition of the
correlation matrix.
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Case study 2: Life insurance

» \We consider a contract subscribed by a x- years old individual
that promises at expiry (date T) the maximum between a

capital Cy and the value of the stock indice S, in case of
survival.

\4

The benefit is nevertheless upper bounded by ;.

If we denote by 7 € R™, the random time of insured's death,
the value of such a policy is

v

Ve =EZ (e_ 4 “FLlirsty (Cr+ (ST = Cr)y — (51— Cu).) |]'—r)

» This contract admits a closed form-expression for its price
(but long...see Detranote for details)
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Case study 2: Life insurance

» We fit a Nelson-Siegel model to the Belgian state yield curve
on the 23/11/22.

» |nitial survival probabilities are described by a Makeham's
model adjusted to male Belgian mortality rates.

» Other market parameters are estimated from time series of the
Belgian stock index BEL 20 and of the 1 year Belgian state
yield from the 26/11/10 to the 23/11/22.

» As we do not have enough data, the correlations ps,, and p,,
are set to -5% and 0%.
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Case study 2: Life insurance

Parameters

1L 0.04642 | os 0.18470

Ky 0.20482 | o, 0.00774
psr | -0.03957 | ny 0.0235

o | 85277e-7T | 3 0.11094
K 0.83925 | 1g 3.325e-03
ps, | -0.05000 | pr, 0.00000

t 5 years T 10 years

So 100 Cr 100

X 50 Cp | 100(1 + 3%)1°

We perform 10000 primary simulations.
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Case study 2: Life insurance

» R? MSE, MSE(V) of regressions of Y; on X; in the LSMC
model. vVEMSE is the MSE valued with analytical prices. d.f.

is the number of parameters.

dy | R? [ \/MSE(V) [ VMSE | VEMSE | d.f.
2 103767 3.02 1134 | 159 | 10
303855 | 247 11.27 | 1.04 | 20
4 103868 | 3.94 1128 | 1.12 | 35
5 03912 | 485 11.26 | 1.02 | 56
6 | 03947 |  6.47 1126 | 1.10 | 84

» The validation set counts 1000 triplets of risk factors. We
consider combinations of 10 empirical quantiles of risk factors
for probabilities from 1% to 5% and from 95% to 99% by step
of 1%.
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Case study 2: Life insurance

K[d [dy] RZ | V/MSE(V) | VMSE [ VEMSE | d.f. | R2_
23| 2039 069 1124 | 067 | 40 | 0.87
303|203 079 11.27 | 055 | 70 | 0.93
4 2| 2038 o087 1132 | 077 | 70 | 0.95
50 2| 2038 0091 1134 | 075 | 90 | 0.96
32| 2038 0093 1129 | 076 | 50 | 0.93

While the MSE's of LLSMC and LSMC are comparable, the
v MSE(V) and VEMSE are clearly reduced by the LLSMC.
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Case study 2: Life insurance

As the contract can be valued analytically, we compare exact VaR
and TVaR to these computed with LSMC (order 3) and LLSMC
(K=3,dy=3and d, =2).
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Case study 2: Life insurance
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The LLSMC clearly yields VaR and TVaR estimates closer to the

the exact ones.
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Conclusions

» The LLSMC combines local and logistic regressions. It
presents several interesting features:

» Computational cost is not prohibitive compared to LSMC
» Robustness and easily interpretable
» Better predictions of prices for extreme values of risk factors

» Warning: be cautious when you design a LSMC or a LSMC
model: R? (or Mallow's Cp), MSE are poor metrics. Working
with a validation sample is more than recommended.

» Full research report : https://detralytics.com /wp-
content /uploads/2023/02/DetraNote-2023-1_Risk-
management-with-local-least-squares-Monte-Carlo.pdf
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