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Dependencies are hard to model

A typical dependency structure in an internal model may look like this:
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What happened?

The bridge collapsed after a cargo ship collided into it.

Picture credit: Amaury Laporte, Stranded Dali Container Ship and Collapsed Baltimore Francis Scott Key Bridge 03, Creative commons license

https://www.flickr.com/photos/alaporte/53680266287/
https://creativecommons.org/licenses/by/2.0/


6

Introduction

6

What happened?

The bridge collapsed after a cargo ship collided into it.

What are the potential consequences for a 

global reinsurer?

The incident could cause losses in several portfolios.

Picture credit: Amaury Laporte, Stranded Dali Container Ship and Collapsed Baltimore Francis Scott Key Bridge 03, Creative commons license

https://www.flickr.com/photos/alaporte/53680266287/
https://creativecommons.org/licenses/by/2.0/


7

Introduction

7

What happened?
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What are the potential consequences for a 

global reinsurer?

The incident could cause losses in several portfolios.

How is this typically modelled in an 

internal model?

There is a copula with a certain parametrization 
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portfolios.
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What happened?

The bridge collapsed after a cargo ship collided into it.

What are the potential consequences for a 

global reinsurer?

The incident could cause losses in several portfolios.

How is this typically modelled in an 

internal model?

There is a copula with a certain parametrization 

describing the dependency between different 

portfolios.

Could such a dependency be 

modelled in a more intuitive way?

Picture credit: Amaury Laporte, Stranded Dali Container Ship and Collapsed Baltimore Francis Scott Key Bridge 03, Creative commons license
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https://creativecommons.org/licenses/by/2.0/


9

Overview of standard dependency modelling approaches
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Var-Cov

✓ A very simple approach also used in 

various standardized approaches

✓ Formally correct only for normal 

distributions

✓ Limits use cases of the model (no 

scenario-by-scenario analysis possible)

✓ Not a state-of-the-art approach for 

internal models

Explicit Copula 

on Loss Distributions

✓ Scenario-by-scenario analysis possible

✓ Capital allocation use case possible

✓ Not always intuitive when explaining the 

results

✓ Difficult to calibrate and always to some 

extent arbitrary

Bottom-Up

Risk Factor Models

✓ Scenario-by-scenario analysis possible 

✓ Bottom-up modelling

✓ Complex since, dependencies between 

all important risk pairs should be 

considered.

✓ Often used for Economic and/or L&H 

risk factor approaches

complexity
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An idea for a risk factor approach in a P&C model
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Some examples:

Baltimore Bridge the event could be classified as a collision and it could easily cause losses in both USA 
property and liability portfolios of a global reinsurer.

 Pandemic, like COVID19, could cause losses in, e.g., credit, property, and that across different regions. 
Note, that a consistent risk factor framework would allow to naturally introduce a dependency between 
L&H and P&C business. 

Why is bottom-up modelling of P&C dependencies difficult?

 The actual distributions of risk factors like, e.g., collision is challenging to estimate,

 The link between a stochastic realization of a risk factor and the corresponding losses is also nontrivial.

Proposal: Decompose portfolios into contributions from risk factors. Portfolios exposed to common risk 

factors would be dependent:

portfolio A portfolio B portfolio C portfolio D

r1

r1

r2

r3

r1

r2

r3
r2
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An idea for a risk factor approach in a P&C model
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The idea of a risk factor approach was originally proposed by Ferriero* for a class of so-called infinitely 

divisible distributions.

A distribution 𝐹 of a random variable (RV) 𝑋 is infinitely divisible if for every positive 𝑛 there exists a set of 𝑛 

iid RVs. 𝑋1, 𝑋2, … , 𝑋𝑛 whose sum has the same distribution 𝐹.

portfolio A portfolio B portfolio C portfolio D

r1

r1

r2

r3

r1

r2

r3
r2

*A. Ferriero. How to build a risk factor model for non-life insurance risk. Journal of Risk, 24(3),2020

P&C Risk Factor idea in a nutshell

1. Decompose the portfolio loss distributions into contributions from different risk factors 

relying on the infinite divisibility,

2. Induce dependency between these portfolios by making the contributions from common 

risk factors comonotonic. 
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P&C risk factor model – a possible approach
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The approach uses the following property of Gamma distribution:

For each portfolio fit a Gamma distribution. This results in a 𝑘p, 𝜃p 

pair for each portfolio 𝑝.

Derive the “on average” risk factor weights 𝑤𝑖 for each portfolio in 

an expert judgement process (will be discussed further on).

Set the contribution of a risk factor 𝑖 in portfolio 𝑝 a:

𝑆𝑖,𝑝~Γ 𝑤𝑖𝑘𝑝, 𝜃𝑝

Reorder the contributions such that for each risk factor 𝑖 the 

contributions 𝑆𝑖,𝑝 are comonotonic in each portfolio 𝑝.

Risk Factor Decomposition

Fire Inflation Pandemic Wind

Portfolio A 50% 36% 14% 0%

Portfolio B 35% 47% 0% 18%

𝑆1~Γ 𝑘1, 𝜃 , 𝑆2~Γ 𝑘2, 𝜃  and 𝑆1, 𝑆2 independent, 

then: 𝑆1 +  𝑆2~Γ 𝑘1 + 𝑘2, 𝜃
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P&C risk factor model – defining the profile of each risk factor
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In general, for each risk factor its accumulation profile needs to be defined in terms of

Geographical location Line of business Business maturity

⚫ A pandemic like COVID19 will 
likely cause losses across the 
world

⚫ On the other hand, a collision 
like the Baltimore Bridge event 
would be geographically 
localized

⚫ A pandemic can create losses 
e.g. in Property and Credit at 
the same time, a collision could 
cause losses e.g. in Property 
and Liability

⚫ On the other hand, a smaller 
insolvency event will likely only 
affect a single line (e.g. Credit)

⚫ A pandemic or collision only 
affects Premium Risk

⚫ Other risk factors like inflation 
and estimation risk can affect 
Premium Risk and Reserve 
Risk at the same time

Determining risk factor profiles can be challenging 

and may require a split by event severity
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Resulting copulas depend on weights and marginals
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Example: 2 portfolios A and B with equal marginal distribution Γ 𝑘, 𝜃  and two risk factors each: 

one common risk factor with weight 𝑤, one individual risk factor with weight 1 − 𝑤. Copulas have…
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Example: 2 portfolios A and B with equal marginal distribution Γ 𝑘, 𝜃  and two risk factors each: 

one common risk factor with weight 𝑤, one individual risk factor with weight 1 − 𝑤. Resulting copulas have…

… 𝑘 dependence, with more 

left/right tail asymmetry for 

lower 𝑘
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… 𝑘 dependence, with more 

left/right tail asymmetry for 

lower 𝑘

…more dependence for 

higher 𝑤 

Example: 2 portfolios A and B with equal marginal distribution Γ 𝑘, 𝜃  and two risk factors each: 

one common risk factor with weight 𝑤, one individual risk factor with weight 1 − 𝑤. Resulting copulas have…
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Example: 2 portfolios A and B with equal marginal distribution Γ 𝑘, 𝜃  and two risk factors each: 

one common risk factor with weight 𝑤, one individual risk factor with weight 1 − 𝑤. Resulting copulas have…

… non-linear shape if 𝑤 

differs between portfolios 
… 𝑘 dependence, with more 

left/right tail asymmetry for 

lower 𝑘

…more dependence for 

higher 𝑤 



P&C risk factor model calibration – several sources of input
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We need to calibrate risk factor weights for every modeled portfolio – possible sources for calibration include:

Any preexisting 

information that can be 

used

Prior 

information
Observations

Expert 

judgment

Historical claims data 

containing risk factor 

information

Subject matter experts 

often have a good idea of 

risk factor contributions

Prior Information, Observations and Expert Judgment (PrObEx) can be combined 

in a Bayesian approach building on work of Arbenz & Canestraro (2012)*

*Ph. Arbenz, D. Canestraro. Estimating copulas for insurance from scarce observations, expert opinion and prior information: A bayesian approach. 
ASTIN Bulletin, 42, 05 2012.



A Bayesian approach can be used to calibrate risk factor weights

Expert   
judgment

⚫ Inputs: expert estimate and self-reported uncertainty 

⚫ Construction uses Dirichlet distribution on the standard simplex

⚫ Likelihood functions of different experts are aggregated by multiplication

Observations
⚫ Historical claims amounts per risk factor can be cast into likelihood function

⚫ Conjugate of the Dirichlet distribution is the multinomial distribution

⚫ Some risk factors may be unobservable in historical data – partial Bayesian update

Prior  
distribution

⚫ Dirichlet distribution describing previous calibration

⚫ Uniform distribution on simplex in case of uninformed prior

19

Posterior 
distribution

⚫ Product of the above likelihood functions

⚫ Point estimate yields final calibration



Summary

 Risk factor models can be used to model 

dependencies between P&C portfolios 

 No need to change marginal models

 More intuitive than more conventional dependency 

models

 Resulting copulas vary with shape of marginals 

and risk factor profiles 

 Calibration can be performed using a combination 

of prior information, observations and expert 

judgment

 Extendable to model cross-risk dependencies 

between P&C and L&H, Market Risk, etc. 
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Appendix



Some risk factors are split into global and local version

Whenever necessary, we split the risk factors into a “global” and a “local” version, relating to the event size: some events 
create more accumulation than others.

⚫ Case 1: Collision, Fire

⚫ Case 2: Cyber

⚫ Case 3: Error & Defect

23

Business maturity Line of business Geographical location

Local Specific Specific Specific

Global Specific Across Specific

Business maturity Line of business Geographical location

Local Across Specific Across

Global Across Across Across

Business maturity Line of business Geographical location

Local Across Specific Specific

Global Across Specific Across
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