

What is the impact of operations with admitted and eventual reinsurers on the credit risk of insurers?

Patricia Arielly Neris Silva (USP) Roberto Bomgiovani Cazzari (USP)

The opening of the Brazilian reinsurance market

- **Complementary Law 126**, enacted in January 2007, ended the nearly 70-year monopoly of the state-owned reinsurer IRB-Re.
- After this legislative change, the market was structured around three types of reinsurers:
 - 1. Local: headquartered in Brazil;
 - 2. Admitted: headquartered abroad and <u>with</u> a representative office in Brazil;
 - 3. Eventual: headquartered abroad and <u>without</u> a representative office in Brazil.

The opening of the Brazilian reinsurance market

- **Objectives:**
 - Strengthen the national market,
 - Increase its capacity and
 - Promote dynamism.
- Protective measures: Initially, 60% of reinsurance operations had to be preferentially allocated to **local** reinsurers;
- This requirement was later reduced to 40% in 2010.

Decree No. 10,167 (December, 2019)

- Decree No. 10,167 established that insurers may cede up to 95% of their reinsurance premiums, calculated based on the entirety of their operations in each year, to **eventual** reinsurers;
- In 2008 the limit was 10%;
- The law does not impose limit on premiums ceded to admitted reinsurers;
- In 2023 SUSEP⁽¹⁾ reported an increase of 120% in premiums ceded to foreign (admitted and eventual) reinsurers between 2021 and 2022.

(1) Brazil's autarchy that regulates the insurance market

CNSP Resolution No. 451 (December, 2022)

- Under CNSP⁽²⁾ No. 451, insurance companies are allowed to have a reinsurance cession (to local, admitted or eventual reinsurers) exceeding 90%, provided they submit a technical justification to SUSEP;
- Previously, the reinsurance cession could not exceed 50% of the premiums written (CNSP, 2007);
- This change could lead to more premiums being ceded to foreign reinsurers, increasing insurers' credit risk.

Benefits of reinsurance x Credit Risk

- Among the benefits provided by reinsurance are:
 - Reduction of exposure to losses that exceed the insurer's retention capacity;
 - Expansion of its underwriting potential and risk diversification;
 - Lower market volatility.
- However, these benefits are not without costs, since reinsurance has **credit risk** integrated into its operation;
- Credit risk arises whenever a company is exposed to losses if a counterparty fails to meet its contractual obligations.

Reinsurers supervision

- The supervision of reinsurers is conducted by SUSEP.
- However, the solvency of admitted and eventual reinsurers is determined by the supervisory authority of their country of origin;
- This may lead to a less stringent regulatory framework compared to local reinsurers;
- As a result, an increase in the credit risk of operations with these companies could be observed.

Objective of the study

- This study aims to:
 - Understand the profile of insurers that migrated part of their reinsurance operations to admitted and eventual reinsurers after the increase in the cession limit defined by the regulation;
 - Assess whether this change led to higher credit risk.
 - Subsequently, it is investigated how this behavior change may impact the solvency of insurance companies.

Methodology

- 80 insurers selected in the sample, covering the period from 2013 to 2023;
- Data source:
 - SUSEP Statistical System (SES);
 - Companies' financial statements.
- The data was structured in a panel format;
- As other variables can influence a company's credit risk, control variables were included in the model;
- Three regression models were applied using White's robust estimators.

Variables of interest

The variables $Decree_{i,t}$ and $CNSP451_{i,t}$ are the variables of interest in the models and represent:

- Decree_{i.t}: dummy variable that determines whether, at time t, Decree No. 10,167 was already in force, since this decree allowed insurers to cede up to 95% of their reinsurance premiums to eventual reinsurers.
- CNSP451_{*i*,*t*}: dummy variable that identifies whether, at time t, CNSP Resolution No. 451 was already in force, as this resolution allowed insurance companies to cede more than 90% of their written premiums in reinsurance.

Control variables

- Size_{i,t}: estimates the impact of the entity's size on credit risk capital;
- GeoDiv_{i,t}: assesses the geographic diversification of an insurer *i* at time *t*,
- **PortDiv**_{*i*,*t*}: assesses the portfolio diversification of an insurer *i* at time *t*,
- LifePrem_{i,t}: represents the proportion of life insurance premiums written relative to the total premiums written by insurer *i* at time *t*;
- Bancassur_{i,t}: dummy variable that identifies whether, at time t, an insurer i is associated with a bancassurance;
- EcoGroup_{i,t}: dummy variable that determines whether an insurer *i* is affiliated with an economic group at time *t*;

Control variables

- *CapStru_{i.t}*: variable that measures the capital structure of insurers; **PremDet**_{i.t}: variable that measures the level of premium ceded to
- reinsurers;
- LossR_{i.t}: variable that denotes the loss ratio of insurers;
- *RetLim_{i.t}* variable that assesses the maximum retention limit across all • lines of business in which an insurer operates, relative to its adjusted equity (AE);
- **COVID**_{*i*,*t*}: dummy variable that indicates whether, at the analyzed time t, • the COVID-19 pandemic was ongoing;

Model 1

Model 1 assess the behavior of premium ceded to admitted reinsurers.

 $PremAdRein_{i,t} = \alpha + \beta_1 Decree_{i,t} + \beta_2 CNSP451_{i,t} + \beta_3 Size_{i,t} + \beta_4 Size_{$ $\beta_4 GeoDiv_{i,t} + \beta_5 PortDiv_{i,t} + \beta_6 LifePrem_{i,t} + \beta_7 Bancassur_{i,t} + \beta_8 PortDiv_{i,t} + \beta_$ $\beta_8 EcoGroup_{i,t} + \beta_9 CapStru_{i,t} + \beta_{10} PremDet_{i,t} + \beta_{11} LossR_{i,t} + \beta_{11} LossR_{i,t}$ $\beta_{12}RetLim_{i,t} + \beta_{13}COVID_{i,t} + \varepsilon_{i,t}$

- **PremAdRein**_{i,t}: represent the amount of premiums ceded to admitted reinsurers, relative to the total premiums ceded to reinsurers;
- P-value of the Hausman test = 0.1575 (Random effects);

Model 2

Model 2 assess the behavior of premium ceded to admitted reinsurers.

 $PremEvRein_{i,t} = \alpha + \beta_1 Decree_{i,t} + \beta_2 CNSP451_{i,t} + \beta_3 Size_{i,t} + \beta_2 Size_{i,t} + \beta_3 Size_{i,t} + \beta_4 Size_{$ $\beta_4 GeoDiv_{i,t} + \beta_5 PortDiv_{i,t} + \beta_6 LifePrem_{i,t} + \beta_7 Bancassur_{i,t} + \beta_8 PortDiv_{i,t} + \beta_$ $\beta_8 EcoGroup_{i,t} + \beta_9 CapStru_{i,t} + \beta_{10} PremDet_{i,t} + \beta_{11} LossR_{i,t} + \beta_{11} LossR_{i,t}$ $\beta_{12}RetLim_{i,t} + \beta_{13}COVID_{i,t} + \varepsilon_{i,t}$

- **PremEvRein**_{i.t}: represent the amount of premiums ceded to eventual reinsurers, relative to the total premiums ceded to reinsurers;
- P-value of the Hausman test = 0.1976 (Random effects);

Model 3

Model 3 asses the variation in the credit risk capital.

 $CredRCap_{i,t} = \alpha + \beta_1 PremAdRein_{i,t} + \beta_2 PremEvRein_{i,t} + \beta_3 Decree_{i,t} + \beta_3 Decree_{i,t} + \beta_4 PremEvRein_{i,t} + \beta_4 Pre$ $\beta_4 CNSP451_{i,t} + \beta_5 Size_{i,t} + \beta_6 GeoDiv_{i,t} + \beta_7 PortDiv_{i,t} + \beta_8 LifePrem_{i,t} + \beta_8 LifePrem_{i$ $\beta_9 Bancassur_{i,t} + \beta_{10} EcoGroup_{i,t} + \beta_{11} CapStru_{i,t} + \beta_{12} PremDet_{i,t} + \beta_{12} PremDet_{i,t}$ $\beta_{13}LossR_{i,t} + \beta_{14}RetLim_{i,t} + \beta_{15}COVID_{i,t} + \varepsilon_{i,t}$

- *CapRCred*_{i.t}: natural logarithm of the credit risk capital of an insurer *i* at time *t*.
- P-value of the Hausman test = 0.0005 (Fixed effects);

- The statistically significant variables of Model 1 are:
- Size_{i.t} (*)
 - Positive (+) correlation;
 - The data indicates that larger insurers tend to cede more premiums to admitted reinsurers.

PremDet_{i,t} (***)

- Negative (-) correlation;
- This means that insurers that transfer a higher proportion of premiums to reinsurers tend to operate less with admitted reinsurers.

- **Bancassur**_{*i*,*t*} (.)
 - Negative (-) correlation;
 - The data indicates that insurers associated with banking institutions tend to cede fewer risks to <u>admitted</u> reinsurers
 - Bancassurance is the collaboration between banks and insurers to distribute insurance products through banking channels.

- The statistically significant variables of Model 2 are:
- Size_{i.t} (*)
 - Positive (+) correlation;
 - The data indicates that larger insurers tend to cede more premiums to eventual reinsurers.

LifePrem_{i.t} (.)

- Negative (-) correlation;
- Insurers with a significant presence in the life insurance sector tend to cede less reinsurance to eventual reinsurers.

CapStru_{*i*,*t*} (.)

- Negative (-) correlation;
- More leveraged insurers tend to cede fewer premiums to eventual reinsurers.
- It can be hypothesized that this phenomenon occurs to avoid a possible increase in credit risk when dealing with eventual reinsurers.

LossR_{i.t} (**)

- Negative (-) correlation;
- insurers with higher loss ratios tend to cede fewer premiums to eventual reinsurers.

COVID_{*i*.*t*} (*)

- Negative (-) correlation;
- Insurers were less likely to cede premiums to <u>eventual</u> reinsurers during the pandemic.

Decree_{*i*.*t*} (***)

- Positive (+) correlation;
- The new regulation effectively resulted in an increase in premiums ceded to eventual reinsurers.

The statistically significant variables of Model 3 are:

*Size*_{*i*,*t*} (***)

- Positive (+) correlation;
- The variable indicates that larger insurers tend to have a higher credit risk capital.

LifePrem_{i.t} (.)

- Negative (-) correlation;
- Insurers that operate widely in life insurance tend to have lower credit risk capital.

COVID_{*i*.*t*} (*)

- Negative (-) correlation;
- During the COVID-19 pandemic, a lower credit risk capital of insurers was observed;
- The lower credit risk capital observed may be partly explained by the reduced cession of premiums to eventual reinsurers during this period, as shown by Model 2.

CNSP451*i.t* (**)

- Negative (-) correlation;
- The new regulation allowing insurers to cede more than 90% of their premiums to reinsurers did not lead to an increase in credit risk.

PrevEvRein_{i.t} (**)

- Positive (+) correlation;
- Insurers that engage more with eventual reinsurers tend to have higher credit risk capital;
- This result aligns with expectations, as these reinsurers are not fully subject to SUSEP supervision and may operate under more lenient regulations compared to local reinsurers.
- Consequences: A higher credit risk capital increases the overall risk capital, requiring a higher minimum capital to meet regulations and guarantee the insurer solvency. This reduces the profits distributed to shareholders and may lower the insurer's appeal to investors.

Thank you! Obrigada!

Questions?

Patricia Arielly Neris Silva – patricia.neris@usp.br Roberto Bomgiovani Cazzari - roberto.cazzari@usp.br

