

Can General-Purpose Models Outperform Specifically Tailored Models? Evidence from Life Insurance **Underwriting: A Case of Medical Examination Sampling**

Chin-Jung Yeh

Cathay Life Insurance

Content

Title	Subtitle	Page
	About Cathay Life Insurance	4
About Cathay Life Insurance & Presenter	About Presenter	5
	Case Study: Medical Examination Sampling	7
Introduction & Research Motivation	Research Objectives	8
	Models Comparison	10
	Experiment Overview	11
	Models : Data & Training Comparison	
Experiment Overview	Model Training Structure	13
	Models: Model Output	14
	Models: Validation Dataset	15
	Risk Groups Definition	16
	Application Validation Metrics	18
	Performance Comparison - Relative Ratios in hospitalization days	19
Experiment Results & Performance Evaluation	Performance Comparison - Health Abnormality Rate	20
	Performance Comparison - Claim Ratio	21
	Comparative Analysis of Model Predictions and Generalization Ability	22
	Conclusions	24
Conclusions	Business Implications	25

About Cathay Life Insurance & Speaker

About Cathay Life Insurance

Company Snapshot

- Largest insurance company in Taiwan
- Offers individual life, health, unit-linked, and

group insurance products

Awards & Recognition

IIC ASIA 2025		Insur-Innovator Connect Awards 2025 Digital Transformation Trailblazer Award	
ITC ASIA	2025 & 2024	ITC Asia Insurer Awards (2025) Digital Transformation Trailblazer Award (2024) Data and Analytics Master Award	
Celent. Model Insurer 2024	2024 & 2023	Celent Model Insurer Awards Data, Analytics and AI	

AIIA 2022 Digital Insurer of the Year

About the Speakers

Chin-Jung Yeh

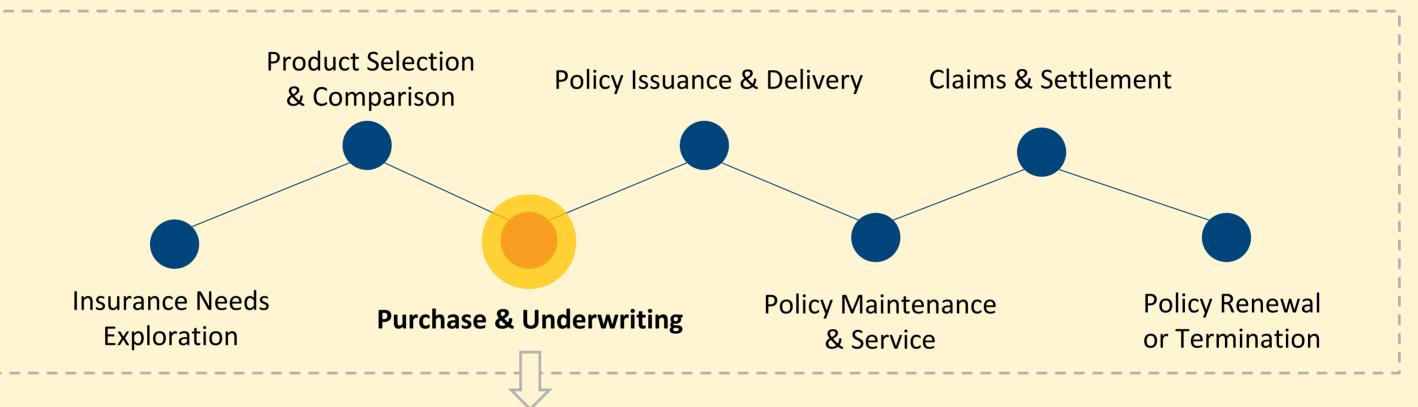
Data Analyst, Data and AI Development Department Senior Business Analyst, Data and AI Development Department

Chia-An Wang

Introduction & Research Motivation

Case Study: Medical Examination Sampling

Insurance Journey



Medical Examination Sampling in Insurance

WHAT

Medical examination sampling is an essential risk control measure used by insurance companies to verify that policyholders' health status aligns with the provided insurance information. WHY

This approach deters the concealment of medical history or health conditions by policyholders, thereby reducing potential claim risks and moral hazards, while improving actuarial and underwriting accuracy.

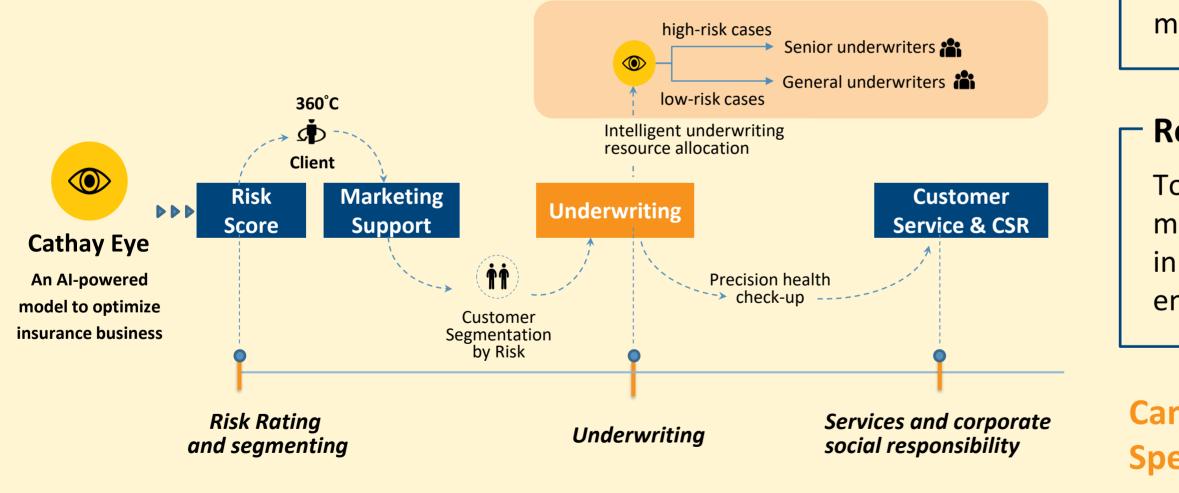
HOW

Insurance companies randomly select a certain percentage of policyholders for health examinations based on criteria such as age, insured amount, and health status.

Research Objectives

Our company has developed a predictive model (Cathay Eye) aimed at optimizing the entire insurance process.

- [Applications]
- Risk assessment within the underwriting process
- Screening for high-risk medical examination sampling
- Allocation decisions for underwriting cases



Research Motivation

In practical modeling, we often start from specific business needs. Choosing whether to use the policy or the policyholder as the prediction unit directly impacts the model's ability to accurately reflect the insured's health risk—and ultimately determines how well it can support risk management and underwriting decisions.

Research Purpose

To explore and validate whether the specialized model delivers superior predictive performance in Medical examination sampling, supported by empirical data to address these concerns.

Can General-Purpose Models Outperform Specifically Tailored Models?

Experiment Overview

Models Comparison

		Specifically tailored models (STM)	Gener
-	Key Characteristics	Focus on the attributes and risk characteristics of the contract itself.	Focus o custom
-	Description	Contracts exhibit relatively high volatility. Based on this characteristic, a Rolling Window Training model is designed to ensure that the model continuously reflects the latest changes in data distribution.	Custom The mo and beh maintai requirin
-	Feature Selection	Features are selected from the contract perspective.	Feature
	Feature Explanation	Based on the contract, using contract-related risk factors.	Based o related of the o
-	Application Scope	Single contract risk assessment, applicable to underwriting claims and similar areas.	Broad c underw

ral-purpose model (GPM)

on the attributes and risk characteristics of **the** ner.

ners generally exhibit relatively low volatility. odel features include historical customer data havioral patterns, allowing the model to ain robust performance and stability without ing annual retraining.

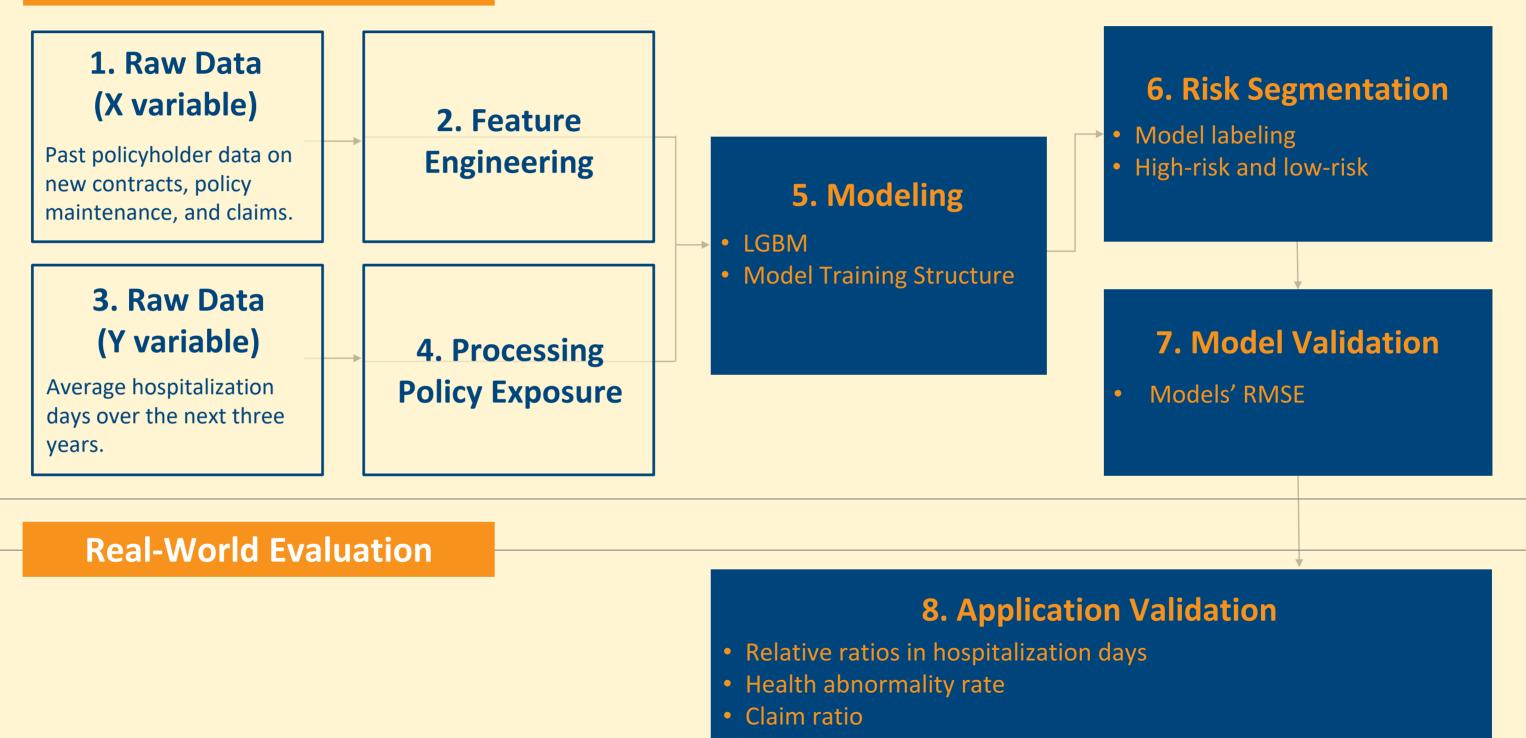
es are selected from a customer perspective.

on the customer, the model utilizes customerd risk factors to provide a comprehensive view overall risk profile.

customer risk segmentation, applicable in writing, claims, marketing, and related scenarios.

Experiment Overview

Model Training Framework

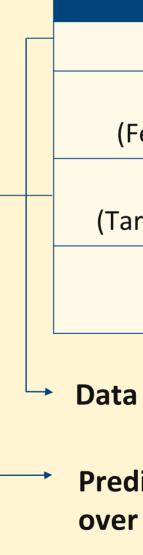


Models : Data & Training Comparison

Specifically tailored models (STM)

	2015	2016	2017
N	≈ 113K	≈ 113K	≈ 95K
X (Features)	142		
Y (Target (days))	Male: 1.74 Female: 1.57	Male: 1.71 Female: 1.54	Male: 1.68 Female: 1.65
RMSE	Male: 2.50 Female: 2.39	Male: 2.50 Female: 2.35	Male: 2.50 Female: 2.47

- From 2015 to 2017, each year collects around one hundred thousand insurance contracts.
- Average hospitalization days per policy projected over the next three years.



General-purpose model (GPM)

	2015/01/01
Ν	≈ 4.35M
X Features)	349
Y arget (days))	Male: 2.48 Female: 2.10
RMSE	Male: 2.80 Female: 2.63

Data from 4 million policyholders as of 2015/01/01.

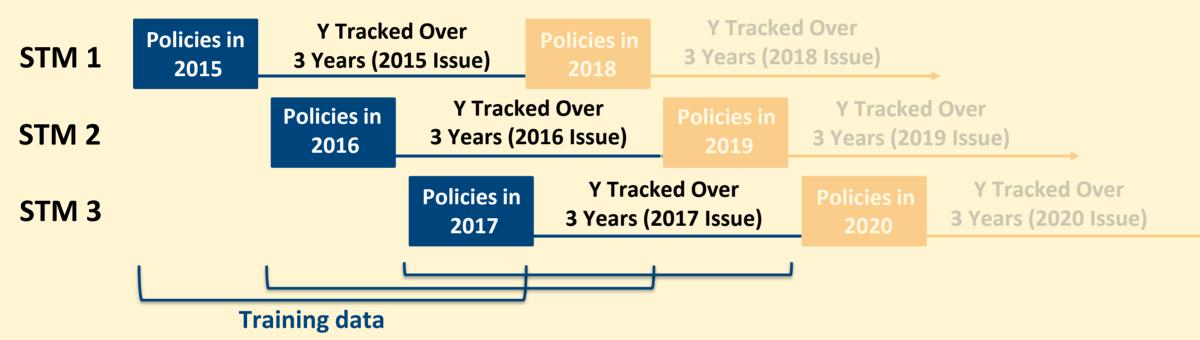
Predicted average hospitalization days per customer over the next three years.

Model Training Structure

<u>2015 2016 2017 2018 2019 2020 2021</u>

Specifically tailored models (STM)

Train the model using the contracts from the entire year of 2015 along with the observable average number of hospitalization days over the next three years for each contract.



General-purpose model (GPM)

Train the model using the contracts from the entire year of 2015 along with the observable average number of hospitalization days over the next three years for each contract.

2022 Present

A **Rolling Window training strategy** is used in STM, where the model is trained using a moving time window that updates annually.

In this study, we validate the model using three consecutive years of data, resulting in three STM models: STM 1, STM 2, and STM 3.

Y Tracked Over 3 Years

Experiment Results & Performance Evaluation

Models: Model Output

Model Output

Risk Label

- 1. Predicts the average hospitalization days over the next three years for each contract or customer.
- 2. Groups the data based on gender and age.
- 3. Sorts the predicted values within each group and divides them into 1000 segments.
- 4. Converts the predictions into risk labels using threshold values from each segment.
- 5. Risk labels range from 1 to 1000, with higher values indicating greater risk.

			Male/12yrs	
			+	
Gender	Age	Risk Score	Risk Label	
Male	12	2.34	380	
Female	36	3.18	120	
Male	58	4.60	970	

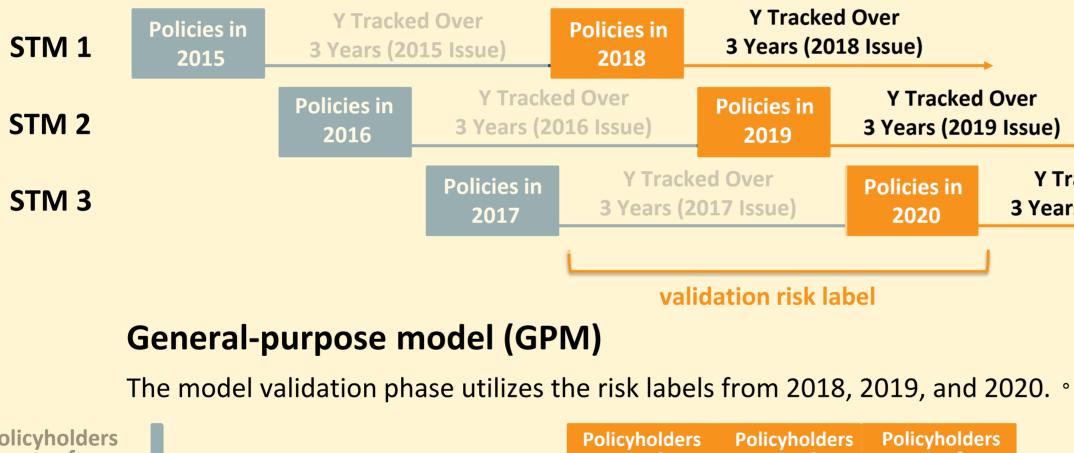
Percentage	Threshold (RS)
1	0.42
2	0.47
3	0.49
999	28.99

Models: Validation Dataset

2015 2016 2017 2021 2022 2018 2019 2020 Present

Specifically tailored models (STM)

During the model validation phase, risk labels from 2018, 2019, and 2020 are used to ensure no overlap between the training and testing data. This approach allows the model to fully assess its generalization capability on unseen data.



Y Tracked Over 3 Years (2020 Issue)

Y Tracked Over 3 Years

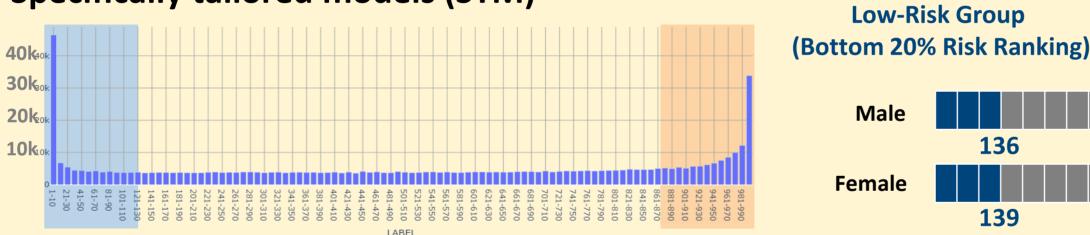
Risk Groups Definition

- Differences in risk distribution between the two models.
- We focus on their ability to differentiate between high-risk and low-risk groups.

High and Low Risk Grouping Method

136

139



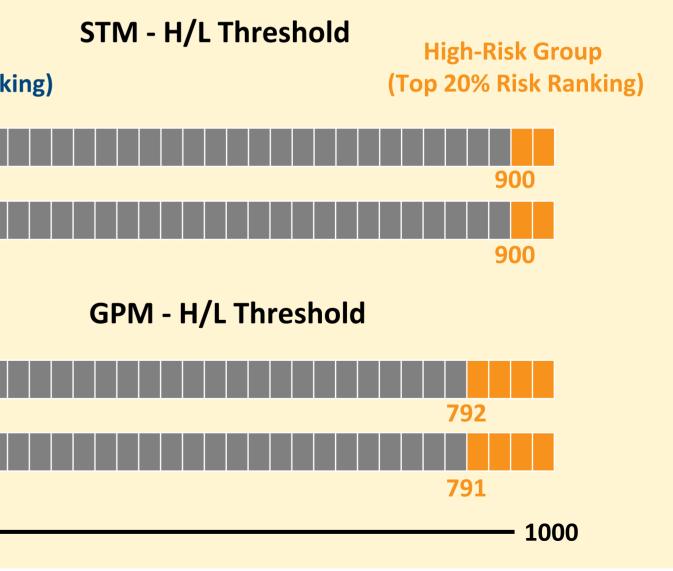
Specifically tailored models (STM)

General-purpose model (GPM)

• The top 20% in risk ranking are designated as the high-risk group.

• The bottom 20% in risk ranking are designated as the low-risk group.

• This grouping method is applied to subsequent indicator validation.



Application Validation Metrics

Relative Ratios in hospitalization days

(High Risk) Average Hospitalization Days over the Next 3 Years (All) Average Hospitalization Days over the Next 3 Years

Health Abnormality Rate

(High Risk) Post – Screening Outcomes: Rejection or Special Approval (All) Post – Screening Outcomes: Rejection or Special Approval

Claim Ratio

(High Risk)Claim Ratio over the Next 3 Years

(All)Claim Ratio over the Next 3 Years

Assess how much higher the average hospitalization days are for contracts/ customers predicted as high risk compared to the overall contracts/ customers.

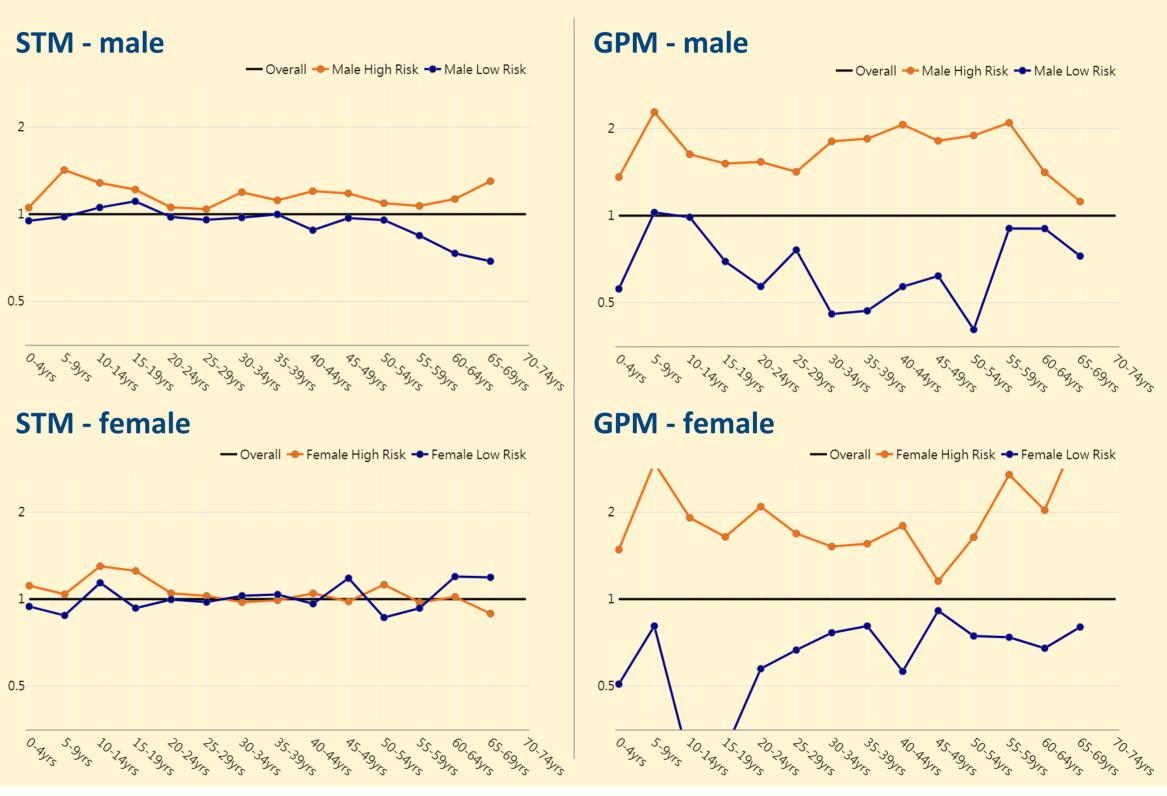
Evaluate how much higher the abnormal screening hit rate is for contracts/customers predicted as high risk compared to the overall contracts/ customers.

Examine how much higher the claim ratio is for contracts/customers predicted as high risk compared to the overall contracts/ customers.

Performance Comparison Relative Ratios in hospitalization days

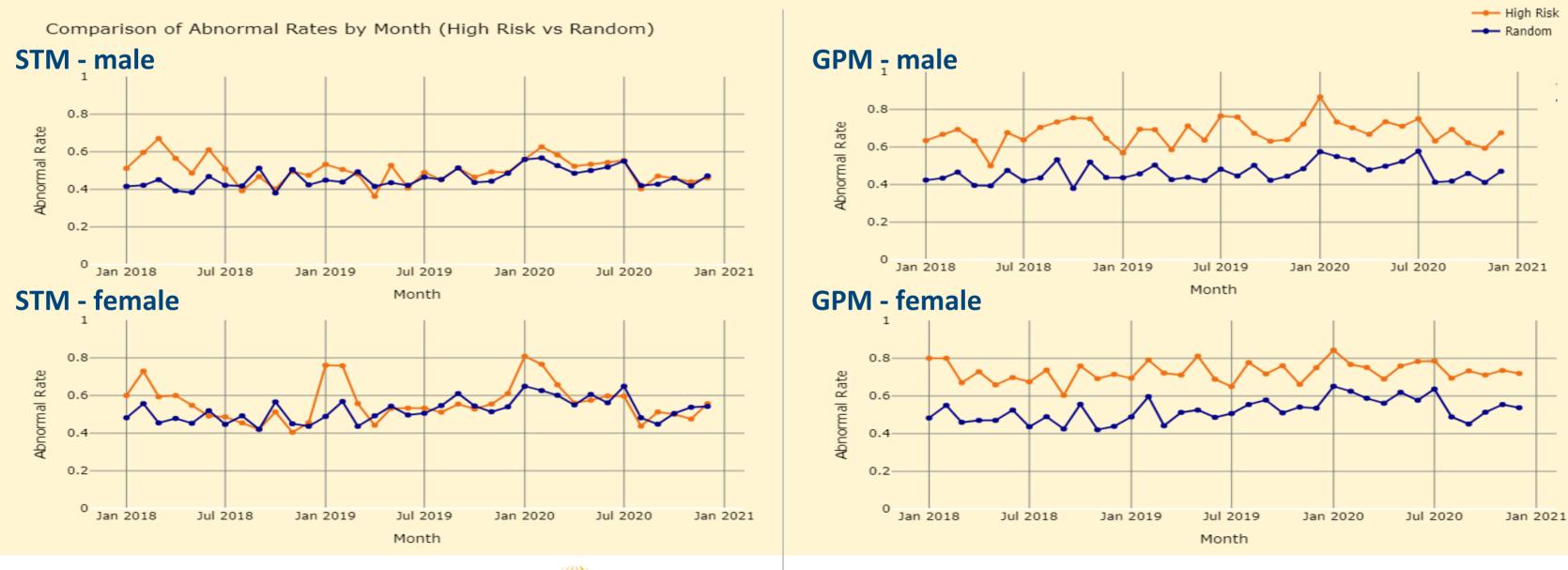
- GPM demonstrates better hospitalization risk differentiation between the high-risk and low-risk groups.
- The high-to-low risk ratio for STM is around 1.2 times.
- The high-to-low risk ratio for GPM is around 2.2 times.

Gender	Male		Female	
Model	STM	GPM	STM	GPM
High Risk	1.19	1.17	1.08	1.49
Low Risk	0.97	0.53	0.99	0.69
H/L Ratio	1.23	2.21	1.09	2.16



Performance Comparison - Health Abnormality Rate

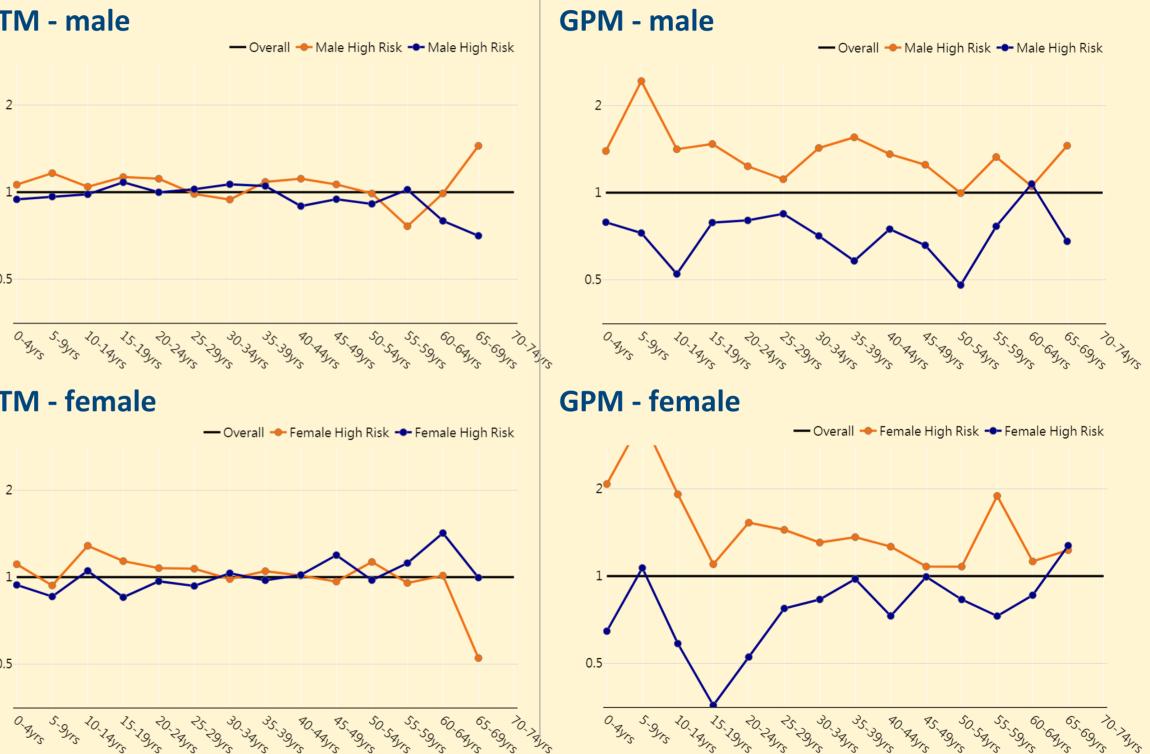
- Based on data from 2018 to 2020, the health abnormality rate in the high-risk group identified by GPM has consistently been higher than that in the random sampling group.
- The monthly fluctuations in the health abnormal rate are primarily due to the randomness introduced by sampling at the validation data level.

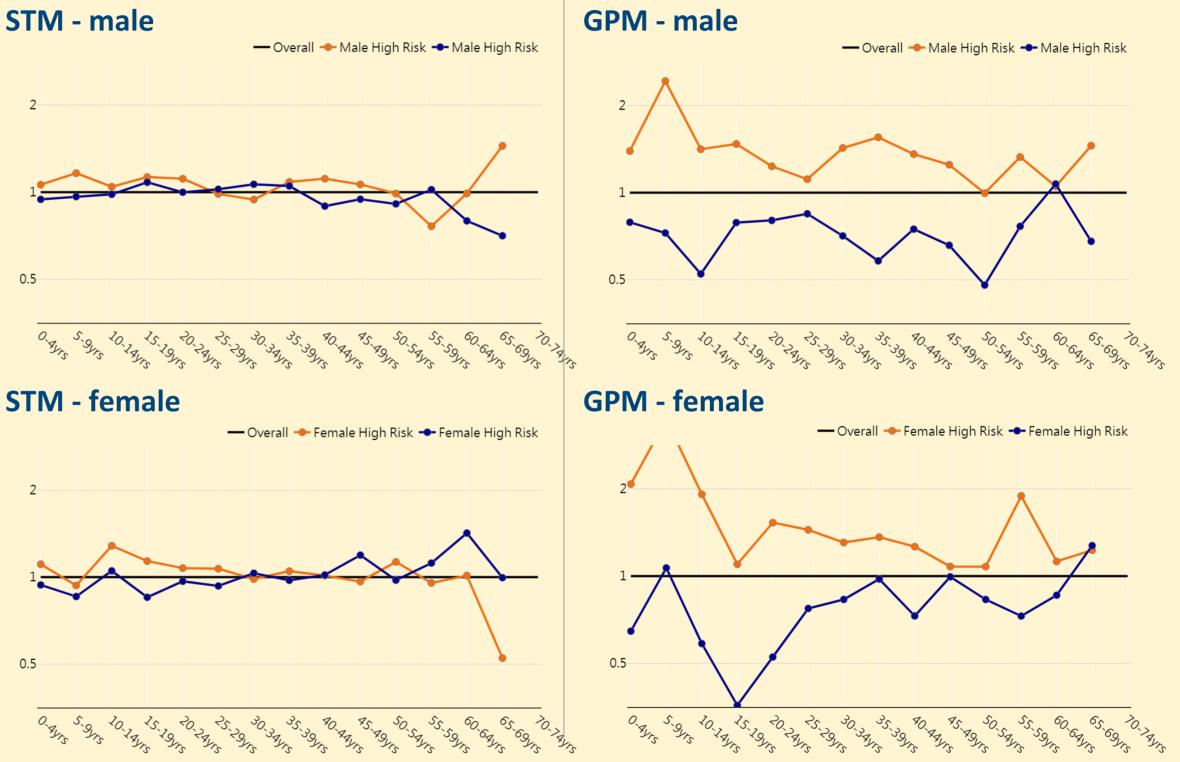


Performance Comparison - Claim Ratio

- GPM demonstrates better claim risk • differentiation between the high-risk and low-risk groups.
- The high-to-low risk ratio for STM is around 1.1 times.
- The high-to-low risk ratio for GPM is around 2 times.

Gender	Male		Female	
Model	STM	GPM	STM	GPM
High Risk	1.08	1.52	1.08	1.48
Low Risk	0.96	0.69	0.99	0.76
H/L Ratio	1.13	2.2	1.09	1.94





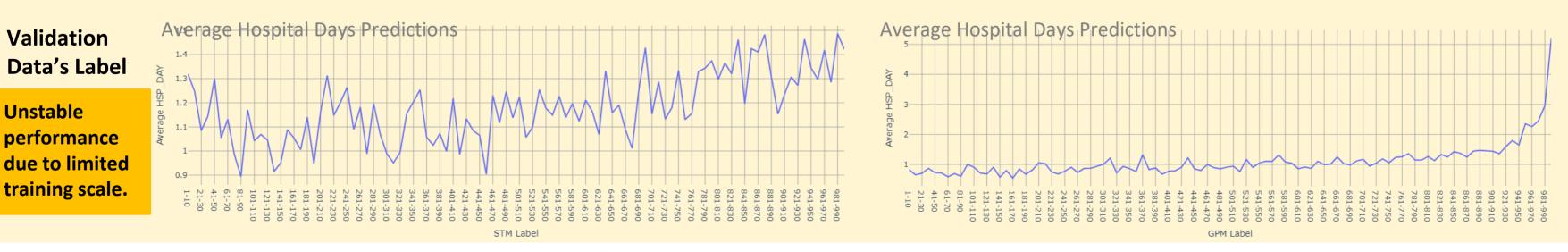
21

Training

Comparative Analysis of Model Predictions and Generalization Ability

In the training data, both the STM and GPM models exhibit comprehensive and smooth prediction curves, indicating that they achieve good fitting within the range of the training dataset.

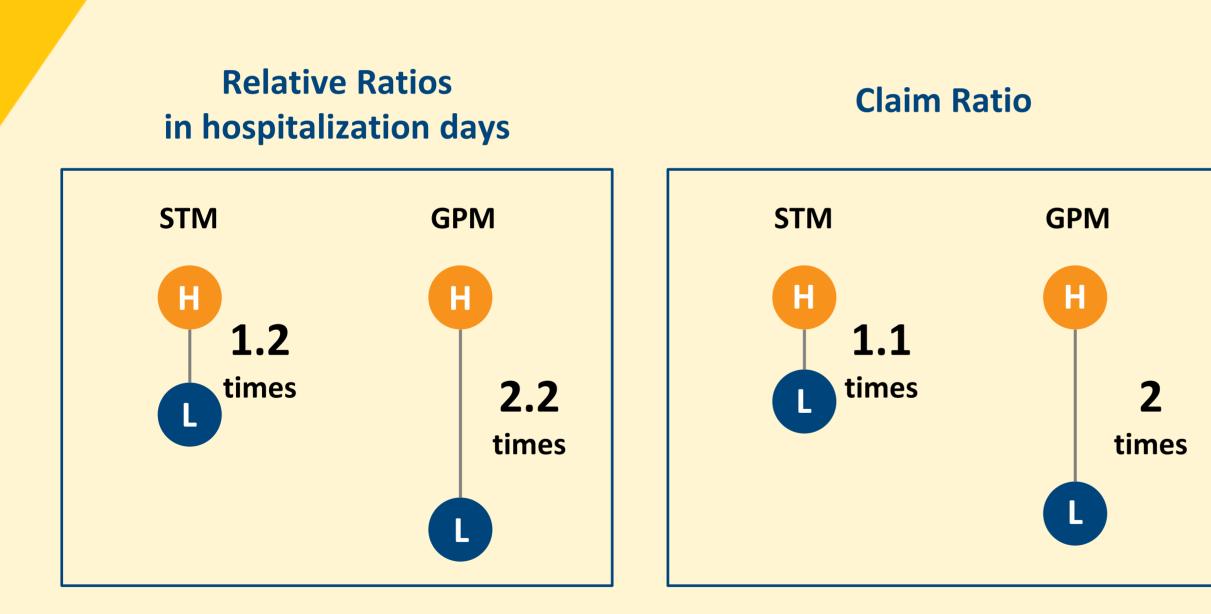
However, in the validation data, we observe significantly increased fluctuations in the prediction curves, which reflects a decline in the prediction accuracy of the STM model on unseen data.



Conclusion

Conclusions

GPM outperforms STM across all evaluation metrics.



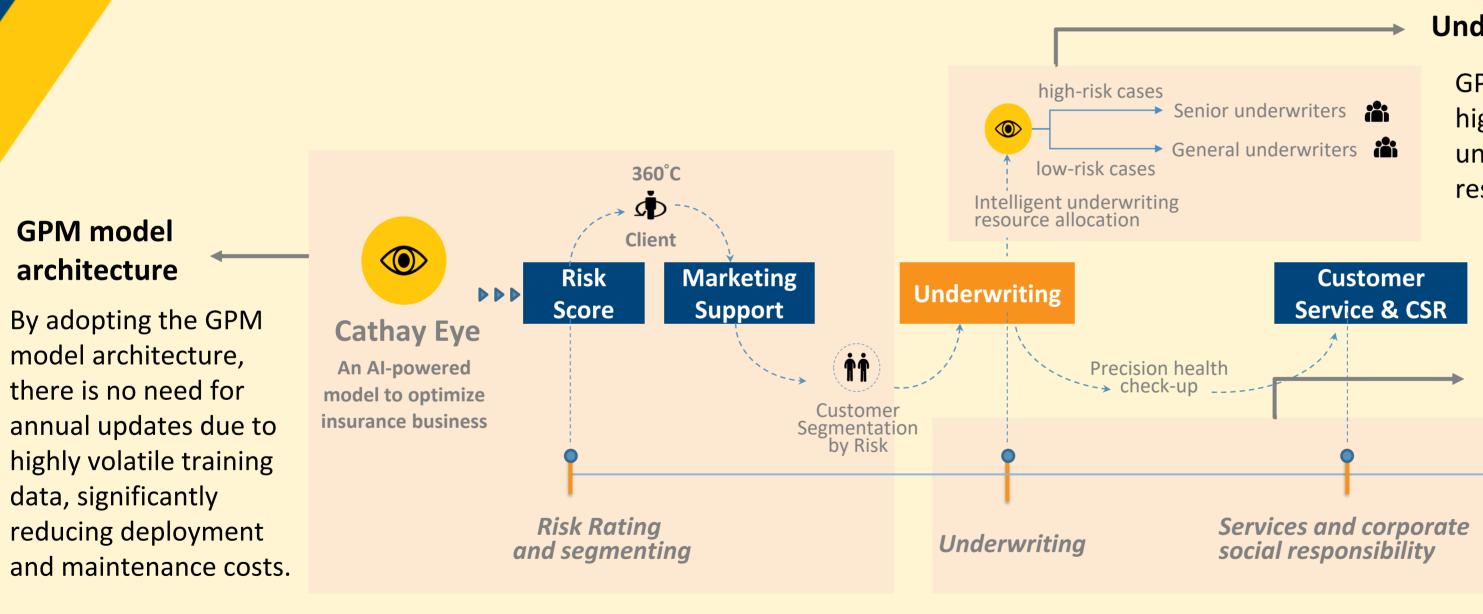
The health abnormality rate for the high-risk group in GPM is consistently 15% to 20% higher than that of the random group.

24

Business Implications

In practice, we deployed the GPM model architecture across the entire insurance process,

achieving remarkable results.



GPM effectively differentiates high-risk and low-risk groups in underwriting, optimizing resource allocation.

Diverse business applications

GPM more easily extends to diverse business applications, providing a universal risk assessment framework that supports precision marketing and long-term risk management strategies.

Thank you! Obrigado! Questions?

