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Introduction

• Mortality forecasting is central to actuarial work, supporting more 

accurate prediction of pension and life insurance liabilities and better 

management of longevity risk.

• A substantial body of research has followed the seminal paper by Lee 

and Carter (1992), including many multi-population extensions since Li 

and Lee (2005).

• Most models forecast time-dependent parameters using standard time 

series methods such as ARIMA.

• However, when applied to multiple countries, this approach becomes 

limiting as it ignores cross-sectional and spatial dependencies often 

present in mortality patterns across populations.
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Introduction

• We draw on methods from panel and spatial econometrics to capture 

cross-sectional and spatial dependence and improve forecast 

accuracy.

• We apply these methods to country-specific mortality indices from the 

Lee–Carter and Li–Lee models, using data from 22 European 

countries.

• For each country and model, we identify the method that performs 

best.

• The pensions and life insurance industry may benefit from more 

accurate mortality forecasts.
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The Lee–Carter and Li–Lee models

• The Lee–Carter (1992) model decomposes the logarithm of central 

death rate 𝑚𝑥𝑡 at age 𝑥 and calendar year 𝑡 as follows:

ln𝑚𝑥𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜀𝑥𝑡.

• The Li–Lee (2005) multi-population model assumes a common trend 

represented by the common mortality index 𝐾𝑡 and country-specific 

fluctuations in country 𝑖 represented by mean-reverting mortality 

indices 𝑘𝑖𝑡:

ln𝑚𝑖𝑥𝑡 = 𝑎𝑖𝑥 + 𝐵𝑥𝐾𝑡 + 𝑏𝑖𝑥𝑘𝑖𝑡 + 𝜀𝑖𝑥𝑡.

• This setup ensures the long-term coherence (non-divergent behavior) 

of forecasts.

• Parameter constraints are used in both models to ensure identifiability.
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Spatial autocorrelation

• Traits or events in one location can influence nearby areas more strongly 

than distant ones.

• Several actuarial applications presented in Brechmann and Czado (2014).

• Heuristically, spatial autocorrelation is the correlation between a variable 

and a weighted average of its values at “nearby” locations.

• The weighted average of nearby values is called a spatial lag:

• Row-normalized spatial weights matrix:



Life expectancy at birth (UN, 2023)



Spatial and spatio-temporal autocorrelation

• We use two weighting schemes: 

(1) unweighted averages of first-order neighbors, and 

(2) inverse distances of capital cities.

• Moran’s 𝐼 measure of spatial autocorrelation is the slope of the 

regression line between the original values and their spatially lagged 

counterparts.

• In spatio-temporal autocorrelation, the value at a given time and 

location may be influenced by values at nearby times and locations.

• Two common specifications:
• Contemporaneous: only current values at nearby locations exert influence.

• Lagged: past values at nearby locations exert influence.



Spatio-temporal autocorrelation

• Contemporaneous and lagged spatio-temporal weights matrices

(⊗ is the Kronecker-product) :

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Kronecker_product


Forecasting methods

1. Most commonly, the mortality index 𝑘𝑖𝑡 is assumed to follow a Random 

Walk with Drift (RWD), assuming spatio-temporal independence of 

yearly increments of the mortality index:

Δ𝑘𝑖𝑡 = 𝛼𝑖 + 𝜉𝑖𝑡 ,
𝜉𝑖𝑡 ∼𝑖.𝑖.𝑑. 𝒩(0, 𝜎).

2. ARIMA models are also commonly used, allowing time dependence 

but no cross-sectional dependence:

Δ 𝑑𝑖 𝑘𝑖𝑡 = 𝛼𝑖 +

𝓁=1

𝑝𝑖

𝜑𝑖𝓁Δ
𝑑𝑖 𝑘𝑖,𝑡−𝓁 +

𝓁=1

𝑞𝑖

𝜃𝑖𝓁𝜉𝑖,𝑡−𝓁 + 𝜉𝑖𝑡 ,

𝜉𝑖𝑡 ∼𝑖.𝑖.𝑑. 𝒩 0, 𝜎𝑖 .
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Forecasting methods

3. Dynamic Panel Linear Model (DPLM, Blundell and Bond, 1998, 

estimated by Generalized Method of Moments), equivalent to AR 

models with equal parameters across countries, with no normality 

assumption:

Δ 𝑑 𝐤𝑡 = 𝛼 +

𝓁=1

𝑝

𝜌𝓁Δ
𝑑 𝐤𝑡−𝓁 + 𝜉𝑡 .

4. Vector Autoregression (VAR, estimated using Elastic Net Regression 

following Guibert, Lopez and Piette, 2019), allowing cross-sectional 

dependence:

Δ 𝑑 𝐤𝑡 = 𝜶 +

𝓁=1

𝑝

𝐀𝓁Δ
𝑑 𝐤𝑡−𝓁 + 𝜉𝑡 .
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Forecasting methods

5. Spatio-Temporal ARIMA (STARIMA, Pfeifer and Deutsch, 1980, where 

𝑊(𝑚) is the 𝑚-th order spatial lag operator), estimated by Kalman 

filter, allowing spatio-temporal dependence:
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𝑧𝑖𝑡 = 𝛼 +

𝓁=1

𝑝



m=0

𝜆𝓁

𝜙𝓁𝑚𝑊
(𝑚)𝑧𝑖,𝑡−𝓁 +

+

𝓁=1

𝑝



𝑚=0

𝜆𝓁

𝜃𝓁𝑚𝑊
(𝑚)𝜉𝑖,𝑡−𝓁 + 𝜉𝑖𝑡 ,

𝑧𝑖𝑡 =
Δ 𝑑𝑖 𝑘𝑖𝑡 −mean Δ 𝑑𝑖 𝑘𝑖𝑡

sd Δ 𝑑𝑖 𝑘𝑖𝑡
.



Forecasting methods

6. Spatial Dynamic Panel (SDP, Lee and Yu, 2010, estimated using Quasi 

Maximum Likelihood, where 𝐖 is a spatial weights matrix), allowing spatio-

temporal dependence:

Δ 𝑑 𝐤𝑡 = 𝜶 + 𝜌space 𝐖Δ 𝑑 𝐤𝑡 + 𝜌timeΔ
𝑑 𝐤𝑡−1 + 𝜌space−time 𝐖Δ 𝑑 𝐤𝑡−1 + 𝜉𝑡.
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Forecasting methods

7. Eigenvector Spatio-Temporal Filter (ESTF, Griffith, 2010, where 

𝐒space−time and 𝐒space are matrices of eigenvectors of 

𝑾space−time and 𝑾space , respectively, and 𝐃 is the matrix of 

country dummy variables), allowing spatio-temporal dependence:

Δ 𝑑 𝐤𝑡 = 𝜶 + 𝐒space−time 𝜷 + 𝐒space 𝜸 + 𝐃𝝓 + 𝝃𝑡.

• Estimated using Ordinary Least Squares with Stepwise or LASSO 

selection to reduce the number of basis vectors.
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Summary of forecasting methods

Method Dependence Estimation Hyperparameters Criterion

RWD temporal MLE − BIC

ARIMA temporal MLE 𝑝𝑖 ,𝑞𝑖( 𝑖 = 1, 2, … , 𝑁) BIC

DPLM temporal GMM 𝑝 significance

VAR
temporal 

and cross-sectional
ENR 𝑝 CV-MSE

STARIMA spatio-temporal KF
𝑝 ,𝜆𝓁 (𝓁 = 1, 2, … , 𝑝) ,

𝑞 ,𝜇𝓁 (𝓁 = 1, 2, … , 𝑞)
BIC

SDPLM spatio-temporal QML
𝑾, time lag, space-time lag, 

Lee-Yu transf. ∈ {0, 1}
BIC

ESTF spatio-temporal
stepwise or 

LASSO

𝑾, spec. ∈ {cont., lagged}, 

selection ∈ {stepwise, LASSO}

BIC and 

Deviance Ratio



Data

• Unisex death counts and exposures by country, age, and calendar year 

from the Human Mortality Database (HMD) for all 𝑁 = 22 European 

countries having data for all years between 1960 and 2019.

• We removed data for ages above 99 years due to low exposures.

• We divided the data into a training (1960-2004) and a test period 

(2005-2019).

• We used data only up to 2019 to avoid testing on the years of COVID-

19, which would have led to a bias towards models that tend to 

overestimate mortality.
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Modeling steps

• We used R (R Core Development Team) for all calculations.

• We estimated the LC and LL models for all countries on the training data 

(1960 through 2004) to extract the mortality index series 𝑘𝑖𝑡 using the 

Poisson assumption of Brouhns et al. (2006). 

• We differenced 𝑘𝑖𝑡 once for stationarity, as indicated by the second-

generation panel unit root test of Costantini and Lupi (2013).

• We estimated the parameters of all seven techniques on the differenced 

series on the training set and selected their best hyperparameters by 

optimizing the associated criteria.

• We forecasted the series into the test set, computed the forecasted 

mortality rates, and computed the Mean Squared Error (MSE) of the 

logarithmic rates.

• We also computed the unweighted average of the forecasts (ensemble).

• We considered only mean-reverting specifications for LL for coherence.
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Results − Lee–Carter mortality index series

and their first-order differences
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Example: Lee–Carter forecasts for Spain 

under the 7 methods
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Robust model selection

• Model performance can depend heavily on the train-test boundary, 

so we designed a robust model selection procedure across multiple 

splits.

• We generated forecasts using 3 different train-test splits per country 

(with the last year in the training period being 2003, 2004, and 2005).

• For each split, we computed:

Under𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑜𝑑𝑒𝑙 = 𝑀𝑆𝐸(𝑀𝑜𝑑𝑒𝑙) – 𝑀𝑆𝐸(𝐵𝑒𝑠𝑡 𝑀𝑜𝑑𝑒𝑙)
to measure how much a model underperforms the best one.

• We evaluated each model’s performance by computing across splits:

(A) the average of underperformance scores,

(B) the maximum of underperformance scores (more conservative).



Number of wins by model and forecasting method 

(A: average, B: maximum underperformance)
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Method LC (A) LC (B) LL (A) LL (B)

RWD 1 1 4 4 

ARIMA 3 3 1 1

VAR 2 2 4 3

DPLM* 2 2 6 5

STARIMA* 2 2 6 6

SDPLM* 2 3 0 0

ESTF* 7 7 0 1

AVERAGE* 3 2 1 2

Spatio-

temporal

*Not yet used in the actuarial literature.



Spatio-temporal clusters

• Local Indicators of Spatial Association (LISA) reveal significantly 

elevated spatial autocorrelation in the Baltic region (Estonia, Latvia, 

and Lithuania) and in Central Western Europe (France, Germany, 

and Switzerland).

• Additionally, the dominant eigenvectors from the ESTF method 

separate the British Isles (UK and Ireland) and Scandinavia (Finland, 

Norway, and Sweden) from the rest of continental Europe.

• These clusters have plausible geographical and historical 

explanations. For instance, the Baltic countries form a distinctive 

group due to their shared Soviet legacy and the severe demographic 

crisis they experienced during the 1980s.



Takeaways

• We bring spatial and panel econometric tools into mortality forecasting 

— a natural but underused extension.

• The methods we propose outperform standard time series models 

across most countries in both LC and LL frameworks.

• We reveal geographically interpretable longevity clusters, showing that 

mortality is not just temporal but spatially connected.

• Forecasts are made probabilistic and actuarially usable via Poisson-

based parametric bootstrapping.

• These methods support better-informed decisions in pensions and life 

insurance, with models that reflect the real structure of mortality data.
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Thank you! Obrigado!

Questions?
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