

CARIBBEAN
ACTUARIAL
ASSOCIATION

LIFE INSURANCE 2.0- CLICK, INSURE, REPEAT

This presentation has been prepared for the 2023 Caribbean Actuarial Association (CAA) Conference.

The CAA wishes it to be understood that opinions put forward herein are not necessarily those of the CAA and the CAA takes no responsibility for those opinions.

Moderator and Presenters

Simone Brathwaite

Senior Principal at Oliver Wyman

Robert Soverall

*Managing Director at Republic Life
Insurance Company*

Audit Sheth

Manager at Oliver Wyman

Agenda

1

Motivation behind the launched individual life insurance product

2

The changing spectrum of life insurance underwriting

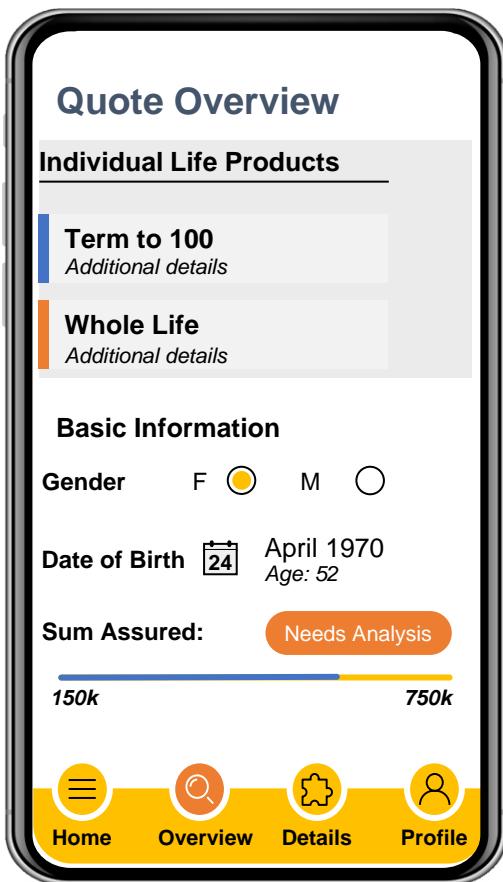
3

Case study illustrating the linkage between mortality and non-traditional data

4

Live demo of the product and outlook for life insurance underwriting

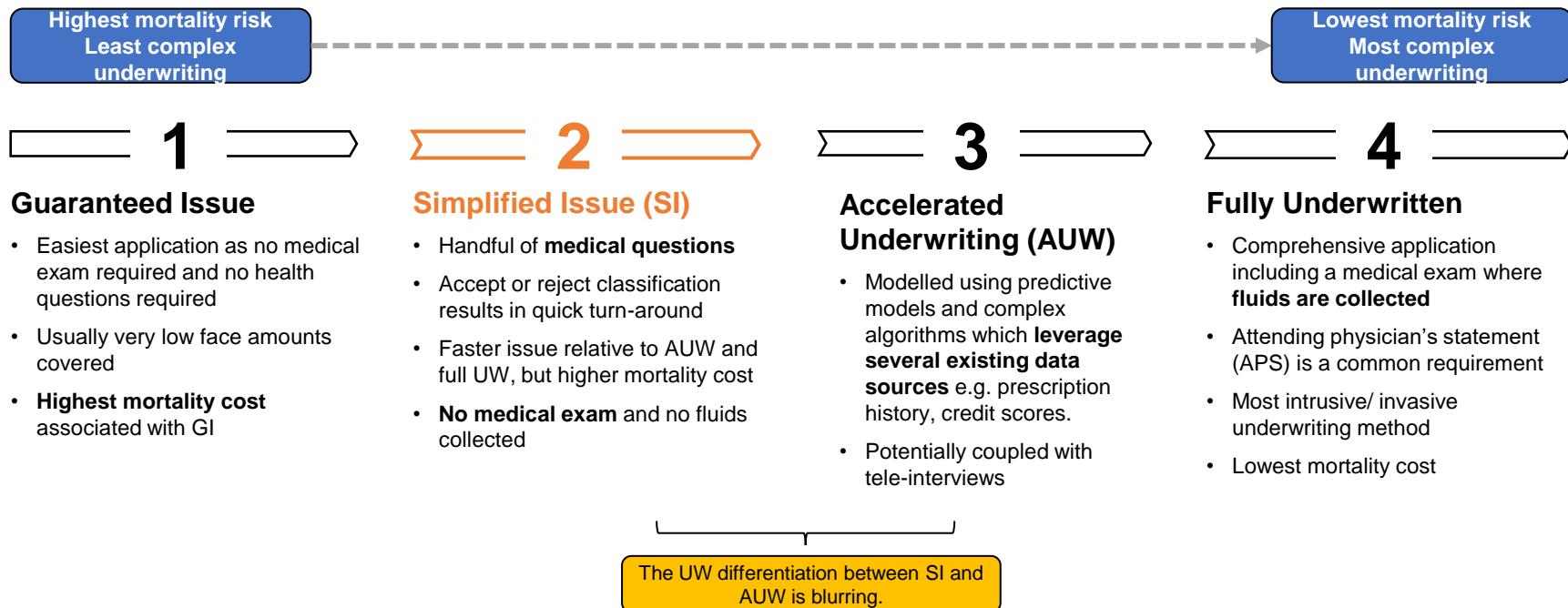
1


Overview of the Product

Motive and introduction of the individual life insurance product

- 1 Enhancing customer-centricity by changing the narrative that “life insurance is sold and not bought”
 - 2 Integrating societal purpose by targeting the significant under- and un-insured population
 - 3 COVID-19 instigated the purchase and underwriting processed of life insurance
 - 4 Embracing modernization, large amounts of data and advanced technologies to improve the overall customer experience
-

Key product features to satisfy the established motives


- 1** Life insurance purchase journey is fully digital and customer purchase journey can be completed within minutes.
- 2** The e-platform provides simplified details on the products and provides users with a needs analysis.
- 3** The product is sold via a D2C channel to accelerate the shift towards digital distribution.
- 4** The products do not require traditional medical underwriting and is 100% fluid-less.

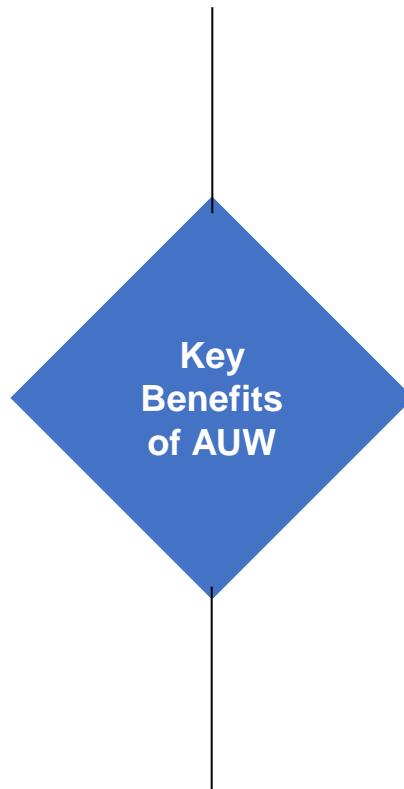
2

The Paradigm Shift to Accelerated UW

Over the last decade, there has been a growing demand and shift towards accelerated underwriting

Simplified Issue and Accelerated UW are less invasive and quicker underwriting approaches

Why is AUW critical to life insurer success in today's market?


Improved customer experience

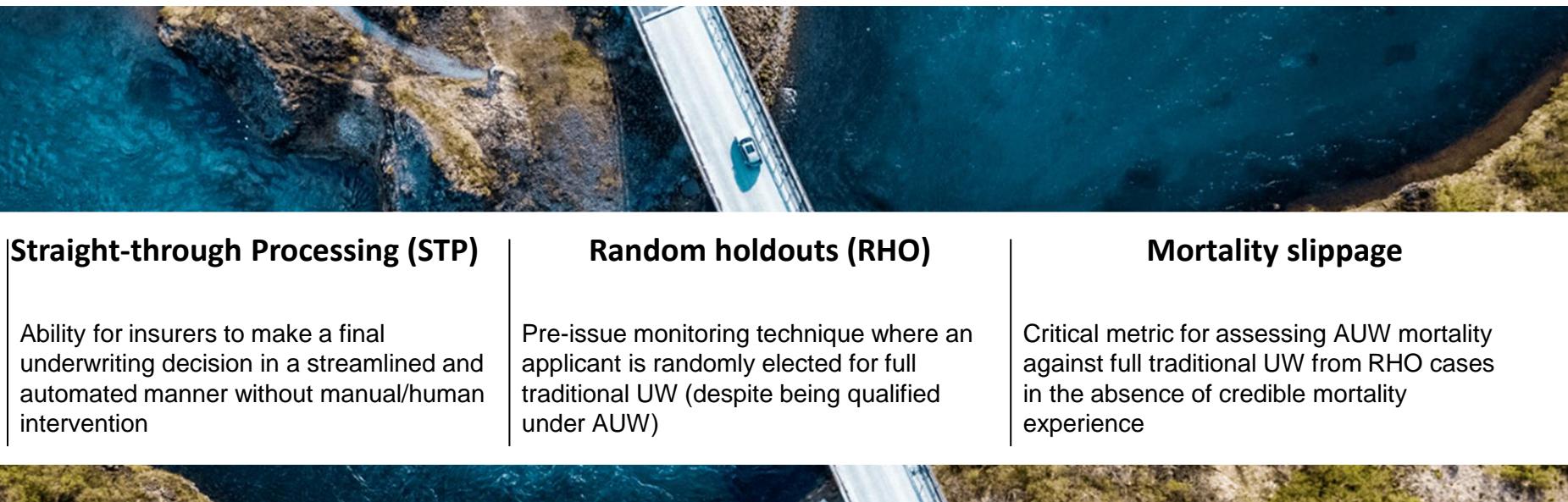
- Customers are adopting to technology, but life insurers have historically been slow to adapt
- Underwriting and purchase of life insurance is viewed as “complex, time consuming and a lengthy handover” process
- AUW gets rid of invasive collection of fluids
- Increased persistency

Lower operational costs

- Replacement of high-cost data sources such as lab reports, APS etc.
- Reduced need of human UW intervention
- Greater potential for direct marketing and sales

Quicker policy issuance

- Long processing times under traditional UW
- Younger population demanding instantaneous sales
- AUW offers a simplified process and allows for sales in minutes


Enhanced risk management

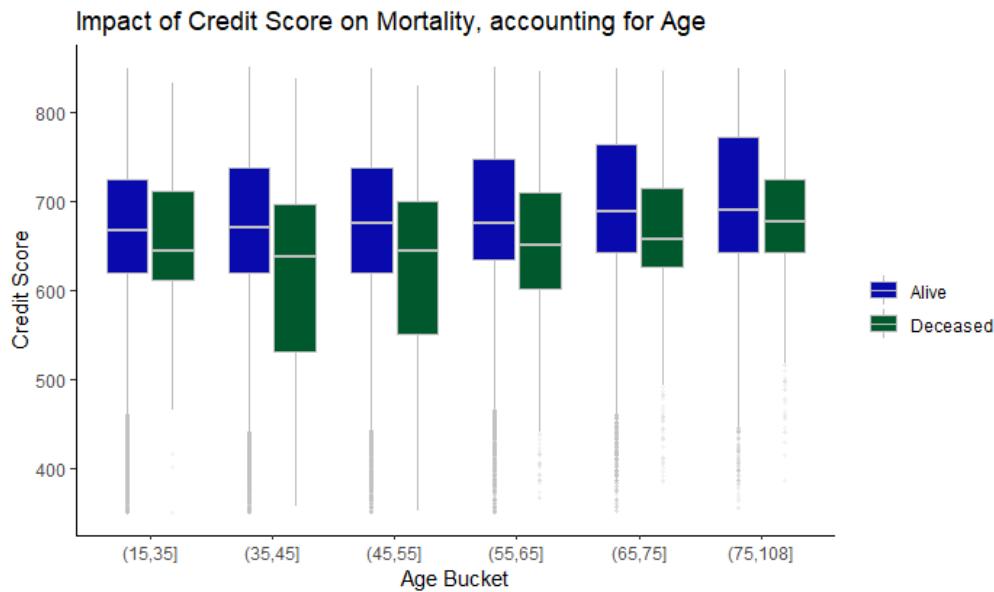
- Insurers can better understand, predict and price risk using the abundance of available data
- Non-traditional variables can help stratify customers risk profile more precisely

The next best alternative to readily available internal data is to consider external data sources for AUW

Underwriting Tool/ Data	Description
Prescription history (Rx databases)	Drug utilization and pharmaceutical prescription database with historical records for applicants. Rules-based algorithms are developed using Rx databases and they are also used for electronic application verification.
MIB	Medical Information Bureau is database containing a list of all individuals who have previously applied for life insurance and health records related to an individual. Again, often used as a fraud-prevention database.
MVR	Motor vehicle records track driving history and any driving-related offences. Believed to be a strong correlation between driving habits and mortality.
Electronic application	Electronic application is the set of lifestyle and health questions answered by the applicant. This is often performed via a tele-interview.
Credit data	Credit scores and credit history data. The credit score can be mapped to historical experience relating credit scores and mortality.
Public record	Public record includes information related to bankruptcies, court records and any criminal activity.
Social media activity	A more niche set of data which insurers are beginning to consider.
Activity information from wearable devices	Some insurers use health and lifestyle related data from wearable devices for UW purposes.

Common terminology and metrics in the AUW paradigm

Straight-through Processing (STP)	Random holdouts (RHO)	Mortality slippage
Ability for insurers to make a final underwriting decision in a streamlined and automated manner without manual/human intervention	Pre-issue monitoring technique where an applicant is randomly elected for full traditional UW (despite being qualified under AUW)	Critical metric for assessing AUW mortality against full traditional UW from RHO cases in the absence of credible mortality experience


3

**Use Case: Linking credit scores
and mortality**

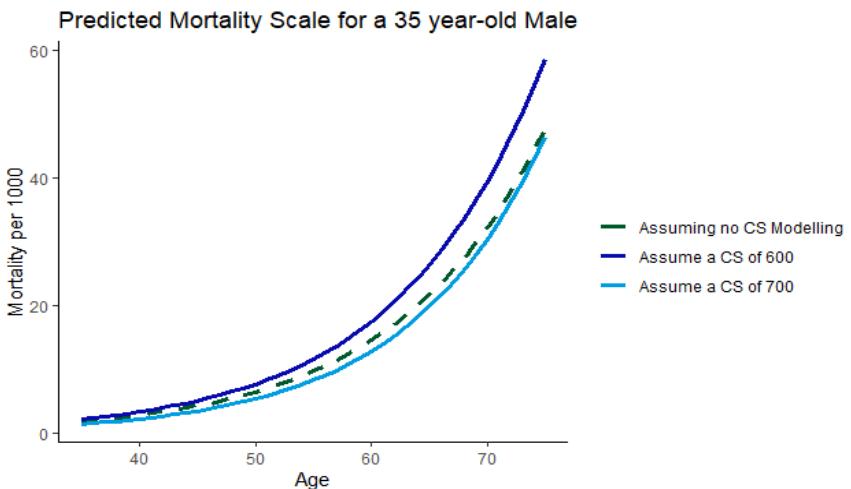
An explicit correlation between credit scores and mortality can be deduced using the TU credit scores

There is a correlation between age and credit score as well, but having gauged this, we still see a relatively strong link between credit scores and mortality especially for the middle-aged populations

- Total dataset, once cleaned, includes **300k** customers. Out of the 300k records, we observe around **3k** deaths.
- The extract used for analysis and modeling contains the following key fields:
 - Primary ID
 - Sex
 - Age
 - Credit Score
 - Deceased Indicator
- The TransUnion credit score in Trinidad ranges from 150 to 950, with a lower score indicating a greater likelihood of delinquency.
- From our dataset, credit score follows a normal distribution with a mean CS of 675.

A predictive model was built to illustrate the mortality signal from credit scores

The aim of this exercise was to:

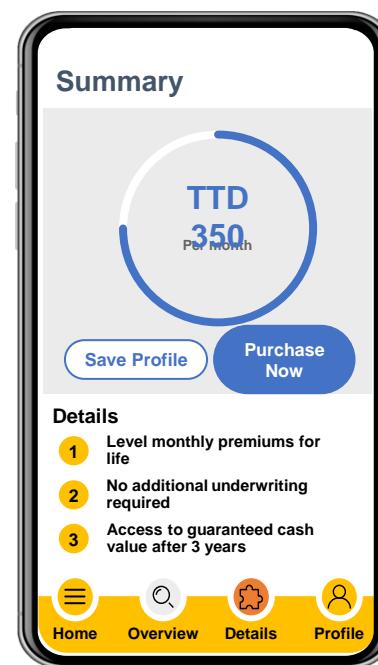
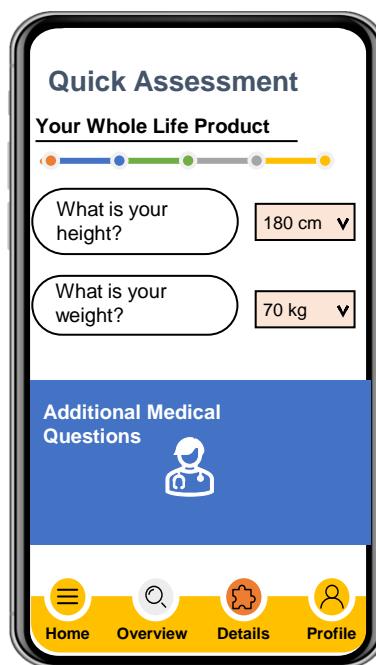

1. demonstrate how including credit scores can improve mortality prediction and
2. how a higher credit score can result in lower mortality cost, thus lower premiums

Model	Variables included:	Area Under Curve (AUC ¹)	Log-Loss Metric ²
1	Sex	0.538	0.053
2	Sex, Attained Age	0.809	0.046
3	Sex, Attained Age, Credit Score	0.820	0.045

The predictive model produces a set of coefficients which allow one to predict the mortality, given a set of inputs. Using the incremental models, we compare the predicted probability of a 50-year old male with a credit score of 600 vs 700 dying within the next year:

Model	Variables included:	q ₅₀ CS = 600 (per 1000)	q ₅₀ CS = 700
1	Sex (M)	12.24	12.24
2	Sex (M), Attained Age (50)	6.46	6.46
3	Sex (M), Attained Age (50), Credit Score	7.65	5.36

1. The Area Under Curve (AUC) metric is a common performance measure for classification models; the metric assesses how accurately the predictive model can distinguish between classes. The measure ranges from 0 to 1 and the higher the measure the better.
2. The log-loss metric is akin the AUC metric; it is indicative of how close the prediction probability is to the actual value (0 or 1). The less the predicted probability diverges from the actual value, the lower the log-loss value.

- The graph above illustrates the effectiveness of incorporating credit scores within the model for key ages. The relative importance is lower at the younger and older ages.
- Life expectancy (LE) differences for the 35 year old male vs Base (i.e., CS not included):
 - Modeling a CS of 700: increases LE by **0.67** years; equivalent to around 93% of the mortality in Base (**7% decrease**)
 - Modeling a CS of 600: decreases LE by **0.89** years; equivalent to around 110% of the mortality in Base (**10 % increase**)

4

Additional considerations and outlook for AUW

Live demo illustrating customers can digitally purchase their life insurance policy within minutes

Despite the advancements in recent years, streamlined underwriting is only the beginning of the innovation journey

2017

2022

2027

Progress to date

- **Increased eligibility ages and maximum AUW face amount limits**
 - Average maximum eligibility age of 58
 - Average FA limit of around 1.8M (increased from 1M in 2018)
- **Around 70 to 80% of North American insurers offer some form of AUW option**
- **Electronic health records, prescription histories, motor vehicle records are commonly used data sources**
 - HumanAPI, MIB are examples of third-party data providers
- **Increased acceleration/ STP rates**
 - On average, around 70% of eligible applicants can be underwritten without human intervention
- **Increasing, but few number of risk classes and risk segmentation**
- **Larger amount of emerging mortality and persistency experience**

Current and future advancements

- **Leveraging other non-traditional sources of data and advancements in technology**
 - technology that can detect pulse colour changes beneath the skin using a smartphone video camera in around 90 seconds
 - additional data sources such as lifestyle data, facial analytics etc.
- **Reduction in restrictiveness of AUW programs**
- **Increased risk segmentation**
 - Ensure premiums for “good risks” are lower than traditional UW
- **Increased product offerings**
- **Improved regulatory guidelines on usage of data**
- **Overall, increased sales and reduction in the underinsured population**

THANK YOU