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What is a Bond Ladder?

Mike has invested

equal amounts of
money in 5 different bonds
that mature at regular intervals.

.: 8 years
L] 4 3.28%
Reinvest the principal in
a new 10-year bond.

Take the money out of
After 2 years, when Bond A the ladder—to spend
matures, Mike has 2 options: or invest elsewhere.

Figure: Source: Blue Haven Capital (2024)

o Built by staggered bonds

@ Sensitive to interest rate — Term risk, Convexity risk
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Interest rates vs Bond prices

\ Bond prices
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Interest rates
AVAVA

Figure: Source: https://www.ig.com/au/
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US 10-Year Yield Rises to 5% for First Time Since 2007
Traders are wagering the Fed will keep policy rates high for longer

WUS 10-year yield

o
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o
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Source: Bloomberg Bloomberg @

Figure: Source: Bloomberg (2023)
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Current interest rate environment

@ Unstable interest environment in the US
o Active monetary policy on interest rates

@ Shifting in the demand and supply of long-and short-term US
bonds

@ Significant impact on bond convexity and duration

Dynamic Bond Ladder Portfolio 7 /43



Silicon Valley Bank (SVB) Collapse

@ SVB collapsed in March 2023 due to a bond strategy mismatch and
rising interest rates, triggering a bank run.

@ It heavily invested in long-term bonds (US Treasuries, MBS)
during low-rate years (2020-2021).

@ These were held-to-maturity (HTM), so losses weren’t reflected as
rates rose in 2022.

@ The interest rate hikes reduced bond values, straining SVB's
balance sheet.

@ Regulatory capital rules 4+ long-term bond holdings exposed SVB to
liquidity risk and forced loss realization.
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Problem Statement

@ Can dynamic investment strategies applied to classical bond ladder
portfolios improve its performance?

@ How do we develop dynamic risk-based decision making process to
adjust bond ladder portfolio in real time and what action should we
consider?
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Real data case study
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hodology

Start End

Collect Historical Yield Data Select Best Action
Conduct Yield Curve Bootstrap Calculate Optimal Stopping Time
Fit Dynamic Nelson Siegel Model Estimate Best Bond Type
Forecast yield curve e Simulate Portfolio Process
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Spot Rate Modeling with the Nelson Siegel Model

Yield Curve from Fed. St. Louis
3D Surface Plot

gbu
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Spot Rate Modeling with the Nelson Siegel Model

Dynamic Nelson Siegel Model (DNS):

1-— e_AT’- 1— e_)‘Ti o
Yt(Tl) = Lt + St <)\7-> -+ Ct (}\T —_e ATI) + ef(Ti)

In Matrix Form:
Yt(T) = ¢(A, T)Xt + €t

o 7 € RN: times to maturity o ®()\, 1) € RV*3: matrix of
o Y.(7) € RV: yields to maturity in  basis functions
matrix form 0 e LI MVN(0,X): error term
o )\ € RT: decay factor > can be assumed to be diagonal

_ 2,
o X¢ = [L¢,Se, G]" € R3: > =0°-Tornot

Level, Slope, Curvature
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Spot Rate Modeling with the Nelson Siegel Model

1 1—e 271 1—e” 1 e 1

}/(7'1) >\T1>\ >\T1>\ i €1
1—e"?2  1—e""2  _—Am
y(.Tz) = 1 e e s|+1|7
: : : : C
y('rn) 1 l—e=?™n  1-e"*n e A | N~~~ €n
ATh AT X N~

Y(m) ®(X,7) y
o 7 € RN: times to maturity o ®()\, 1) € RV*3: matrix of
o Y.(7) € RN: yields to maturity in ba§i§junctions

matrix form o ¢ '~ MVN(0,%): error term

o )\ € RT: decay factor > can be assumed to be diagonal

_ 2.
°Xf:[Lt,5t,Ct]TER3: > =0T ornot

Level, Slope, Curvature @ n: number of different tenors in

one single day
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Spot Rate Modeling with the Nelson Siegel Model

Kalman Filter and Multi-step Forecast - 1 years bond
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Simulated Yield Curve from DNSM

Figure: Bond Yield Curves.
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Design of Our Experiment

We define a set of assumptions for our framework.

Fixed investment schedule of one-month periods.

Unrestricted borrowing and lending at an equal risk-free rate r.

We must make one action (other than our static action) per
investment period.

Bonds may bear coupons
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Investment Actions

Ai+ = 0 : the state of have no principle or coupons remaining to
produce yield

A+ =1 the state of continuing to hold investment position

o A= 3 : selling of any remaining principle and coupons

e A+ =4: buying a bond
Art
Azt . .

o A = . : a vector of actions at time t on bond 1,2, ..., N;
AN,.¢

@ N;: the total number of bonds after taking an action
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Cash Movement h for selling a bond

For selling a bond, the changes in cash position for both deficit h; and
surplus hy are given below.

N1

he(Ad) == > La =3 Bi,
j=1

h27t(At) = - min(O, Dt_ler + hl,t(At))
where

° BETJ is the cash equivalent to jt bond value at time t
@ D;_q is the cash deficit at time t — 1
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Total Cash Position: The portfolio total cash position C; at time t is
defined as

Ct = St_Df

Deficit Definition: The deficit D; is the level of borrowed capital at
time t. The deficit formula is given below.

D, = ]-{C0<Bo}(BO — Co) ift=0
(th]_er + hl,t(At))+ ift>0

Surplus Definition: The surplus S; is the available cash at time t.
The surplus formula is given as follows.

S = 1{C0>Bo}(C0 - BO) ift=0
(Stfler + h2,t(At))+ if t >0
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Present Value of the k" Bond

Present Value of the k" Bond:

Vi

B.., = Z [cjefrk,j)/r(n,j)1{Tkyj>0}]gl(Ak’l;t)
=1

+FeiTkyt(Tk)]-{Tk>0}g2(Ak,1:t)
Determining Whether bonds are Still in Effect:

t

gl(Ak,l:t—l) = H |1{Se|| (3)=A; or strip (2)=A;} — 1|
i=1

Ak 1: t H ’1{5e|| )=Ai} — 1|
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Cash Equivalent to the Present Value of the k' Bond

Cash Equivalent to the Present Value of the k" Bond

Vik

Btc,rk = Z [cje—Tk,th(Tk,j)1{Tk’j>0}]gf(Ak’l:t)
j=1
+Fe I 015 (Ak1:t)
Determining Whether Cash Equivalents Are Still in Effect:

t
gf(Ak,l:t) = H |1{sell (3)=A; or strip (2)=A; or buy (4):A,-}’
i=1

t

gg(Ak,l:t) = H ll{sell (3)=A; or buy (4):A,-}’
i=1
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Bond Portfolio Value and Total Portfolio Value

The bond portfolio value B; after taking an investment action at time t
is given by,

N
Be=Y Bir,
k=1

The total portfolio value [1; including both cash and bond bonds after
taking an investment action at time t is given by

nt:Ct+Bt
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Profit/Loss from an action

The Profit/Loss W; from taking an investment action A; ; at time t is
given by

W =T, (Alzt—l,Aj,t = 3) — Iy (Alzt—la Aj,t = 1) = Actga’l) + ABgaJ)
where

e a=223,4,

° ACt(a’l) is the difference in cash positions from taking the action at
time t,

° ABfa’l) is the difference in bond values from taking the action at
time t.
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Accumulating Profit/Loss to time t + h

The accumulating Profit/Loss W, ;. from taking an investment action
Aj ¢ at time t accumulating at time t + h is given by

Wt,t+h - AC£a71)erh + ABgi’i)h

where

@ r is the continuously compounding risk-free rate,

° ACt(a’l) is the difference in cash positions from taking the action at
time t,

o AB™Y s the difference in bond values from taking the action at

t,t+h
time t accumulating to time t + h.
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Multiple Stopping Rule

Gain Function: For a given multiple stopping rule 7 = (71, ..., 7¢) the
gain function is defined as

g(m)=W(m)+ ...+ W(7x).

Value of the Game: Let S, be the class of multiple stopping rules
T = (m,...,7k) such that 77 > m (P-a.s.). The function

Vm = sup E[g(7)]

Tem

is defined as the m-value of the game and, in particular, if m =1 then v»;
is the value of the game.

Optimal Multiple Stopping Rule: A multiple stopping rule 7* € S, is
called an optimal multiple stopping rule in S, if E[W(7*)] exists and
E[W(T*)] = V.
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Optimal Multiple Stopping Rule

Let W(1),..., W(T) be a sequence of independent r.v.s with distributions
Fi,...,Fr, and a gain function Zk W(7;). Let vt/ be the value of a

game W|th L(LLT steps remaining and / (/ < k) actions (stops)
remaining. If E[W( l,...,E[W(T)] exist then the value of the game is

given by
vt = E[W(T)],
v =E[max{W(T — L+1),v" "}, 1<L<T,
yhiH — E[max{vL_l” + W(T - L+1), vL_l’H'l}], I+1<L<T,
=BT w(T -1+ 1))

The optimal stopping rules 7% = (7,...,7}) are

T—my,k T—my,k—1
myk o, T—m }’

T—mjk—itl _ VTfm,-,kfi}

o= min{m :1<m<<T—k+1,Wim)>v

o= min{m 1, <m T —k+i,W(m)>v ,

i=2,... k-1,

*

e = min{me : T <m < T, W(my) > vT_"’k’l}
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Optimization Criteria

The version of the multiple optimal stopping rule developed for bond

ladders restrict to one action per investment period: sell a bond prior
to maturity; or strip a bond of coupons; or do nothing.

@ Hence only consider value functions vt! per investment period:
vit = E[W(T)),
vbl = E[max{W(T — L+ 1),vt"11].

where L is then the remaining days until the end of the investment period.
@ The iterative procedure developed endeavors to find the:
@ best bond
@ optimal stopping-time
© and earliest action

which maximizes portfolio profit W; ;,, as of some future date. In this

study, this future date corresponds to dates before bond purchases are
scheduled.
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Selection Algorithm

Step 1 : Acumulating Profit/Loss Ws(f;") Calculation

© Simulate N Monte Carlo samples from the Nelson Siegel model
with origin t and forecast horizon t + h;

@ Identify the j*h bond yield at that time origin and evaluate the
change in the portfolio value if that bond has an action applied
given an investment action a (Sell/Strip) using:

(J)  _ i) Ar(hj (a,1,i)
Wt,t+hj - ACs(a I’J)er( ) + ABt,tJrhj )
where
0 i=1,23,..N,
o t is the date for which an action is taken,
e h; is the waiting time until the next investment schedule.
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Selection Algorithm

Step 2 : Calculate the Monte Carlo estimate of the value
function for the j* bond action

Q Calculate
P = %i W),
Vieth = Z max{ Wiy, 7
where

o i=1,23,.. N,
o t is the date for which an action is taken,
e h; is the waiting time until the next investment schedule.
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Selection Algorithm

Step 3 : Select the optimal bond for taking action

@ Solve
o ~t+h1,1 ~t+hy,1 ~t+hy,,1
J* = argmax {varh1 Vetihy e Ve erhy, }
J€{1727"'7Nf}
where

e i=1,23..N,
o t is the date for which an action is taken,
e hj is the waiting time until the next investment schedule.
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Selection Algorithm

Step 4 : Select the optimal time to take an investment action

The optimal stopping rules 7% = (75,...,7}) are

o= min{m 1< m <t+h—k+1,W(my) > vHhimmek _rrhimmekeiy
o= min{m oy < mp <t hp— ki, W(mp) > vt meke it e mmikeiy
e o= min{my Ty < me <t by, W(my) = v ety

where i =2, ... k— 1.
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Multiple Stopping Rule

1=1 1=2 1=3 1=4 1=5 1=6 1=7
L WO
R | Left end point of the support of y
L Pl pl2
VE = Emax(vH 4y gy + vib] ‘

VM = E[p 1 gy ]

Figure: Value function vb/: L (steps remaining) and / (stops remaining).
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Simulation Study

A Quick Look at Our Architecture

bondType 2
bondType 1 bondType 3
bondLedgerObj
bondPortfolio
cashPosObj yieldObj

Figure: Portfolio Process Object Oriented Diagram
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Simulation Study

We conduct two case studies on synthetic data generated on Nelson Siegel
Model Parameters calibrarted to US Treasury Curve.

Assume the following when comparing classical Static non-adaptive Bond
Ladder (static) to Dynamic Adpative Bond Ladder (Adaptive)

@ start with cash position composed of $100,000

@ purchase two 11 year bonds with 3% quarterly coupons and $10,000
principal to start and two 10 year bonds at the end of each month
with the same coupon rate, period, and principal

@ set a risk-free rate of 3% for borrowing and lending

@ allow selling and stripping in addition to static and synthetic actions
Note that the dates shown are arbitrary.
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Results
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PortFolio Cumulative Return %

Dynamic Simulation (No Action vs Sell & Strip [All Units])

portType
Adaplive
— static

A

S\

/

/
- f \Vi
/;\//

2024 2026 2028 2030
Date

Figure: Cumulative Return (Dynamic vs Classical).
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Portfolio Return

Full History Portfolio Return Violins

A A
Y

Adaptive

Portfolio Return %

Portfolio Strategy

Figure: Full History Portfolio Return Violins (Dynamic (left) vs Classical (right)).
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Portfolio Maximum Draw Down

Dynamic Simulation (No Action vs Sell & Strip [All Units])

B
8 F‘ | —
E 50l ] — portType
g L Adaptve
F | s
° f
£ [
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25- [
—
I
2024 a6 208 0%
Date

Figure: Portfolio Maximum Draw Down (Dynamic vs Classical).
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Portfolio Value at Risk

Dynamic Simulation (No Action vs Sell & Strip [All Units])
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Figure: Portfolio Value at Risk (Dynamic vs Classical).
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Conclusions
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Conclusions

@ The dynamic bond laddered portfolio outperforms the classical one.

@ The dynamic bond laddered portfolio offers more stability and
flexibility
@ The optimization method improves capital efficiency

o It is a useful tool for both individual and institutional investors
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Thank Youl

Questions are welcome.
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