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= Most recent developments:

= Developments in the legal area
= Reqgulatory developments around the "Al explainable"” requirement
= Use of norms for Al applications

= Latest scientific requirements around explainable Al
= Can Al have a moral and if so how would it work and be governed?

= Next steps
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EU HAS MOST ADVANCED AI GOVERNANCE FRAMEWORK

= The EU has taken a conservative legal
view on Al governance by keeping the
o, makers (Natural persons/legal
e entities) fully accountable for the Al
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Limited risk Chat IqotS. deep fgkes,
emotion recognition
Transparency systoms

Gode of conduct S = The UK and US seem to take a slightly
more accommodating approach:

Unacceptable risk
Prohibited

Source: L. Edwards, The EU Al Act: a summary of its significance and scope, 2022, p. 9

= Less strict disclosure requirements

Al Safety: UK and US sign landmark
agreement

1 day ago

= Balanced focus on opportunities

By Liv McMahon & Zoe Kleinman, BBC News
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DEVELOPMENTS IN THE LEGAL AREA

OVERVIEW WITH EU-LAWS RELATED TO THE AI ACT

General and .
{—> product safety Charta Liability Security Guidelines
Security & Cyber Cyber
Pe.cu” Y GDPR NIS2 Security Resilience
rivacy
Act Act

Data‘& GData SDIgI.tal |\[/)|Iglialt Data Act
<:> Services overn- ervices arke (planned)

ance Act Act Act

II

European norms <:I International norms
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EUROPEAN HIGH COURT DECISION

ECJ on the compatibility of scoring with the provisions
of the GDPR (C-634/21)

The ECJ ruled that scoring constitutes an "automated individual decision-making', which is
generally not permitted under the GDPR, if the scoring determines whether a third party to whom
the score value is transmitted establishes or terminates a contractual relationship with this
person. The referring court must examine whether the BDSG contains an effective exception to
this prohibition and, if this is the case, whether the general requirements of the GDPR for the
processing of personal data are met.

According to the ECJ, scoring constitutes such an automated decision-making if the customers
of SCHUFA, e. g. banks, make their decision (e. g. on the granting of credit) solely dependent on
the score value.

Aus Sicht von Bundesverbraucherschutzministerin Steffi Lemke (Grine) hat der EuGH die Verbraucherrechte beim Scoring ge-

starkt. ,Mit dem Urteil wird der Schutz der Verbraucherinnen und Verbraucher erweitert: Wer einen Vertrag abschlieBen will,
muss sich darauf verlassen kénnen, dass dieser nicht maBgeblich durch eine Maschine abgelehnt wird”, sagte sie.

DEVELOPMENTS IN THE LEGAL AREA

Black box algorithms only are not
allowed for credit decision making

Human interference in high impact
decisions is required

German Federal Minister responsible for
consumer rights stated clearly that
consumers can rely upon the fact that
rejections are not only based on machine
decisions

Based on discussions the human
interference is only needed in case of
rejections. Approvals can be used
directly
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SUPERVISORS SHARED THEIR VIEWS: EXAMPLE DUTCH CENTRAL BANK

=" DNB introduced the ,SAFEST” principles:

= Soundness
Accountability

= Fairness
General principles for the u EtthS
use of Artificial Intelligence
in the financial sector .

= Skills

Transparency (now often referred to as explainability)

= A study with participation of banks, supervisors and the University of
Applied sciences in Utrecht showed a divergence in opinion around the
explainability requirement

= Discussion needs to be intensified to prevent implementation hurdles
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= Skills and capabilities for both the users
Skills & and creators of models
Capabilities
= Are supervised organisations in full
control of all model components (e.g.
foundation models)?

= Al models should be considered like all
other models and therefore be subject
to the same model governance rigor as
other (internal) models

Supervisory
concern

/ N

= This includes use test components

Validation Governance comparable to Solvency Il models
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A MULTITUDE OF NORMS HAS BEEN DEVELOPED

" Legitimacy " Prevalence of human actions and oversight
" Ethical = Technical robustness and security
= Robustness = Data protection and data quality
= On the fundament of management
= Human autonomy ® Transparency
= Damage prevention = Diversity, non-discrimination and fairness
" Fairness = Societal and ecological wellness

" Transparent = Accountability

Source: DIN, DKE (2022): Deutsche Normungsroadmap Kinstliche Intelligenz (Ausgabe 2), 2022, p21
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IMPACTED AREAS

Areas to pay attention to:

Underwriting

= \ulnerable customers

= Potential discrimination due to:

= Biased data sets

Capital \ = Model design

Management Insurance |

Pricing

= Hallucination

= Explainability of decisions in all (esp.
customer related) areas
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PR = XAI can provide answers to
COMPUTER VISION the question:

Why did the model predict
this?

= XAI can provide insight in
undesired patterns in the
data: right predictions for
the wrong reasons

= Split modelling in a
predictive and explanation-
centric path
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MEIKE NAUTA Raw data Powerful black box Interpretable features Controllable white box  Prediction

Co-12 property Evaluation approaches (extract)

f ~ ¢ Correctness « Classification process of part-prototype models is correct by design

since f(x) = e(x 3
. Evaluat(e }))rototgfpl visualisation with synthetic data or incremental . M Od S I S S h ou Id be tra N ec' to
deletion/addition of image patches I earn ta S k' e I eva I"lt
- Completeness = Output-complete by design I nte rp reta b I e featu res

» Evaluate human-output-completeness with simulatibility user studies

= CO-12 properties can
define explainability quality

e = e Consistency + Implementation invariance and nondeterminism
e =~ e Continuity = Stability for slight variations

e ++ ¢ Contrastivity  « Contrastive by design; can answer counterfactual questions
» Pragmatism and compactness for optimal contrastive explanation
= Target-sensitivity for location of prototypes
» Target-discriminativeness to evaluate prototypes
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CAN Al USE
MORALITY

AND IF SO HOW
WOULD IT WORK
AND BE
GOVERNED?
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In the use of Al algorithms we can
distinguish three levels:

1. Self learning general Al algorithms
based on external data

2. Self learning specialized Al
algorithms based on specific data
offered by experts

Governance

Expert
3. Governance Al algorithms based on
specific data regarding norms and
rules (laws)
General
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- Expert Al algorithm uses results of
earlier decisions of experts in
comparable situations to determine
,most wanted" result

When needed AI algorithm asks for
input of expert
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« Governance Al algorithm uses
existing data containing existing rules
and norms destilled from earlier
decisions to govern the action to get
“acceptable results”

When needed the Al algorithm asks
for input from monitoring expert (for
instance compliance manager)

Symbolic language necessary for
describing laws, rules and norms in
the context of operation
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« Three phases for Al algorithms

 Ex-ante
Measures to be taken before
executing algorithm

* Processing
Governance (monitoring) while
executing algorithm

9jue-x3
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* Ex-post
Measuring result of Al
algorithm andusing it for (later)
decisions
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Ex ante

rules

action

Organization

fulfilment

result Ex post

anomaly

input

A 4

Al process

output
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 When using smart contracts, the
execution follows same path:

- Ex-ante determining execution
rules smart contract based on
available data

- Execution of smart contract
governed by intermediate
checks on expert and norm
data

« Ex-post measuring result of
smart contract execution and
possible acceptance
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