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Motivation
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Premium tariffs have long been used to reference general 

insurance premiums according to “rating factors”.

Some rating factors (e.g. insured’s age, region, occupation) have 

too many categories to determine reliable pure premiums for their 

individual categories. Complex tariffs with many categories may 

increase the operational risk of applying incorrect premiums.

Categories in such risk factors are often integrated into fewer 

groups which have similar risk levels by actuaries.

However, finding the optimal grouping of the rating categories is 

difficult due to the enormous number of grouping combinations. 

Thus, we employ a sparse regularisation technique to find a good 

grouping of the rating categories efficiently. 



Aim of our study
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Sparse regularisation techniques can integrate categories in rating 

factors into some groups with similar risk levels (e.g. Accurate GLM 

by Fujita, Kondo, and Iwasawa, 2020). However, most of these 

methods are applied to claim frequency and severity, separately.

We propose sparse regularisation techniques to provide consistent 

segmentation of rating classes between claim frequency and severity.

×Expected claim frequency

Age Age Age

Expected claim severity = Expected total claim cost
(pure premium)



Settings
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We have claim data of 𝑇 policies. The 𝑡 th policy has exposure 𝑤𝑡, 

number of claims 𝑧𝑡, and mean severity of claims 𝑦𝑡. 

Consider 𝑝 rating factors whose numbers of categories are 

𝑛1, … , 𝑛𝑝 , respectively.

Let 𝑥𝑡1, … , 𝑥𝑡𝑝 denote the categories to which the 𝑡 th policy 

belong for the 1st to 𝑝 th rating factors.

Our aim is to estimate the expected claim frequency 𝜇𝑡
(1)

and 

severity 𝜇𝑡
(2)

, leading to the expected total claim cost or pure 

premium 𝜇𝑡
(1)

× 𝜇𝑡
(2)

.



Distribution for claim frequency/severity
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Poisson distribution for claim frequency 𝑧𝑡 :

𝑓(1) 𝑧𝑡 𝜇𝑡
(1)
, 𝑤𝑡) =

𝑤𝑡𝜇𝑡
(1) 𝑧𝑡

𝑧𝑡!
𝑒−𝑤𝑡𝜇𝑡

(1)

⚫ 𝑧𝑡 : number of the claims from the 𝑡-th policy.

⚫ 𝑤𝑡  ： total exposure of the 𝑡-th policy.

⚫ 𝜇𝑡
(1)

： expected claim frequency per exposure of the 𝑡-th policy, i.e. E 𝑧𝑡 = 𝑤𝑡𝜇𝑡
(1)

.

Gamma distribution for claim severity 𝑦𝑡 given the number of claims 𝑧𝑡 :

𝑓(2) 𝑦𝑡 𝜇𝑡
(2)
, 𝑧𝑡 , 𝜙) =

1

𝑦𝑡Γ
𝑧𝑡
𝜙

𝑦𝑡𝑧𝑡

𝜇𝑡
(2)
𝜙

𝑧𝑡
𝜙
exp −

𝑦𝑡𝑧𝑡

𝜇𝑡
(2)
𝜙

⚫ 𝑦𝑡 : mean severity of the claims from the 𝑡-th policy.

⚫ 𝜇𝑡
(2)

： expected claim severity of the 𝑡-th policy, i.e. E 𝑦𝑡 = 𝜇𝑡
(2)

.

⚫ 𝜙   ： dispersion parameter, i.e. Var 𝑦𝑡 ∝ 𝜙.



Generalised linear models for claim frequency/severity
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Log-link GLMs (multiplicative models) for claim frequency/severity:

log 𝜇𝑡
(𝑗)

= 𝛽0
(𝑗)

+ 𝛽1𝑥𝑡1
(𝑗)

+ 𝛽2𝑥𝑡2
(𝑗)

+⋯+ 𝛽𝑝𝑥𝑡𝑝
𝑗

𝑗 = 1,2

⟺ 𝜇𝑡
(𝑗)

= exp 𝛽0
(𝑗)

× exp 𝛽1𝑥𝑡1
(𝑗)

× exp 𝛽2𝑥𝑡2
(𝑗)

⋯× exp 𝛽𝑝𝑥𝑡𝑝
𝑗

𝑗 = 1,2

⚫ 𝛽0
(𝑗)

: intercept for claim frequency ( 𝑗 = 1) or severity ( 𝑗 = 2).

⚫ 𝑥𝑡𝑖 : category of the 𝑖-th factor to which the 𝑡-th policy belongs.

⚫ 𝛽𝑖𝑘
(𝑗)

: regression coefficient for the 𝑘-th category of the 𝑖-th factor (see below).

Categories in the 𝑖-th factor

1st category ・・・ 𝑘 th category ・・・ 𝑛𝑖 th category

Expected claim 
frequency

exp 𝛽𝑖1
(1)

・・・ exp 𝛽𝑖𝑘
(1)

・・・ exp 𝛽𝑖𝑛𝑖
(1)

Expected claim 
severity

exp 𝛽𝑖1
(2)

・・・ exp 𝛽𝑖𝑘
(2)

・・・ exp 𝛽𝑖𝑛𝑖
(2)

Relative difference between the categories in the 𝒊-th factor



Fused lasso
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Log-likelihood function:

𝑙 𝜷, 𝜙 =෍

𝑡=1

𝑇

log 𝑓 1 𝑦𝑡 𝜇𝑡
1
(𝜷), 𝑧𝑡 , 𝜙) + log 𝑓(2) 𝑧𝑡 𝜇𝑡

(2)
(𝜷), 𝑤𝑡)

Fused lasso is a sparse regularisation method to shrink absolute 

difference in regression coefficients between adjacent categories:

(෡𝜷, ෠𝜙) = argmin
𝜷,𝜙

−𝑙 𝜷, 𝜙 + 𝜅෍

𝑖=1

𝑝

෍
𝑢,𝑣 are
adjacent

෍

𝑗=1

2

𝛽𝑖𝑢
(𝑗)

− 𝛽𝑖𝑣
(𝑗)

Non-significant differences in adjacent coefficients will be shrunk to 
exact zero, which means those coefficients have the same expected 
claim frequency or severity.

regularisation terms



Categories in the 𝑖-th factor

・・・ 𝑢 th category 𝑣 th category ・・・

Expected claim frequency ・・・ exp 𝛽𝑖𝑢
(1) exp 𝛽𝑖𝑣

(1)
・・・

Expected claim severity ・・・ exp 𝛽𝑖𝑢
(2) exp 𝛽𝑖𝑣

(2)
・・・

Fused lasso
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Adjacent categories with the same expected claim frequency and 

severity, simultaneously (i.e. 𝛽𝑖𝑢
(1)

= 𝛽𝑖𝑣
(1)

 and 𝛽𝑖𝑢
(2)

= 𝛽𝑖𝑣
(2)

), can be 

regarded as one category group to which the same premium should 

be applied.

However, due to the separate penalty for frequency and severity, the 

fused lasso integrates adjacent categories inconsistently between 

frequency and severity, leading to too many groups for insurance 

rating.

𝛽𝑖𝑢
(2)

− 𝛽𝑖𝑣
(2)Penalty term for the difference 

in expected claim severity

𝛽𝑖𝑢
(1)

− 𝛽𝑖𝑣
(1)Penalty term for the difference 

in expected claim frequency



Group fused lasso
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Group Fused lasso shrinks differences in expected claim frequency 

and severity simultaneously to zero between adjacent categories.

(෡𝜷, ෠𝜙) = argmin
𝜷,𝜙

−𝑙 𝜷, 𝜙 + 𝜅෍

𝑖=1

𝑝

෍
𝑢,𝑣 are
adjacent

𝛽𝑖𝑢
(1)

𝛽𝑖𝑢
(2)

−
𝛽𝑖𝑣
(1)

𝛽𝑖𝑣
(2)

2

Categories in the 𝑖-th factor

・・・ 𝑢 th category 𝑣 th category ・・・

Expected claim frequency ・・・ exp 𝛽𝑖𝑢
(1) exp 𝛽𝑖𝑣

(1)
・・・

Expected claim severity ・・・ exp 𝛽𝑖𝑢
(2) exp 𝛽𝑖𝑣

(2)
・・・

Relative difference between the categories in the 𝒊-th factor

𝛽𝑖𝑢
(1)

𝛽𝑖𝑢
(2)

−
𝛽𝑖𝑣
(1)

𝛽𝑖𝑣
(2)

2

= 𝛽𝑖𝑢
1
− 𝛽𝑖𝑣

1
2
+ 𝛽𝑖𝑢

2
− 𝛽𝑖𝑣

2
2Penalty term for the difference 

between adjacent categories



Optimisation problem
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Gradient-based optimisation methods cannot be applied for 

(Group) fused lasso because the objective functions cannot 

always be differentiable (e.g. when 𝛽𝑖𝑢
(1)

= 𝛽𝑖𝑣
(1)

 and 𝛽𝑖𝑢
(2)

= 𝛽𝑖𝑣
(2)

).

The optimal solution (෡𝜷, ෠𝜙) can be obtained by solving the 

following equivalent optimisation problem with dummy variables.

min
𝜷,𝜙,𝝃

−𝑙 𝜷, 𝜙 + 𝜅෍

𝑖=1

𝑝

෍
𝑢,𝑣 are
adjacent

𝝃𝑖,(𝑢,𝑣) 2

s. t. 𝝃𝑖,(𝑢,𝑣) = 𝜷𝑖𝑢 − 𝜷𝑖𝑣 =
𝛽𝑖𝑢
(1)

𝛽𝑖𝑢
(2)

−
𝛽𝑖𝑣
(1)

𝛽𝑖𝑣
(2)

for 𝑖 = 1,… , 𝑝, and all adjacent pairs 𝑢, 𝑣



Algorithm
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The constrained optimisation problem can be solved by iterating the 

following updating equations, which is called the alternating direction 

method of multipliers (ADMM) :

𝜷𝑛𝑒𝑤, 𝜙𝑛𝑒𝑤 =

argmin
𝜷,𝜙

−𝑙 𝜷,𝜙 + 𝜅෍

𝑖=1

𝑝

෍
𝑢,𝑣 are
adjacent

−𝝀′𝑖, 𝑢,𝑣 𝜷𝑖𝑢 − 𝜷𝑖𝑣 − 𝝃𝑖, 𝑢,𝑣 +
𝜌

2
𝜷𝑖𝑢 − 𝜷𝑖𝑣 − 𝝃𝑖, 𝑢,𝑣 2

2

𝝃𝑖, 𝑢,𝑣
𝑛𝑒𝑤 = ቐ

1 −
𝜅

𝜼𝑖, 𝑢,𝑣 2

𝜼𝑖, 𝑢,𝑣

𝜌
if 𝜼𝑖, 𝑢,𝑣 2

> 𝜅

0 otherwise

where 𝜼𝑖, 𝑢,𝑣 = 𝜌 𝜷𝑖𝑢
𝑛𝑒𝑤 − 𝜷𝑖𝑣

𝑛𝑒𝑤 − 𝝀𝑖, 𝑢,𝑣

for 𝑖 = 1,… , 𝑝, and all adjacent pairs 𝑢, 𝑣

𝝀𝑖, 𝑢,𝑣
𝑛𝑒𝑤 = 𝝀𝑖, 𝑢,𝑣 − 𝜌 𝜷𝑖𝑢

𝑛𝑒𝑤 − 𝜷𝑖𝑣
𝑛𝑒𝑤 − 𝝃𝑖, 𝑢,𝑣

𝑛𝑒𝑤 for 𝑖 = 1,… , 𝑝, and all adjacent pairs 𝑢, 𝑣

Constant to adjust convergence speed(Transpose of) Lagrange multiplier

Gradient-based optimisation methods are available



Example: compulsory automobile insurance in Japan 
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Nomura (2017) applied the proposed model to claim data of 

microbuses from compulsory automobile liability insurance

aggregated by prefectures in Japan and estimated expected claim 

frequency and severity.

We defined the prefectures 

whose roads connects directly to 

each other as the adjacent 

prefectures (see the right map).

Adjacent prefectures 
are connected by 
pink lines



Regression coefficients w.r.t. penalty weight 𝜅
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Regression coefficients (relative difference among the prefectures) 

are integrated as the penalty weight 𝜅 increases.

The optimal 𝜅 (green vertical line) selected by 5-fold cross validation

integrates 46 prefectures into 35 groups.
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Group fused lasso with ordinal constraints
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In practice, some ordinal constraints are often imposed to insurance 

premiums such as monotonic constraints on bonus–malus classes in 

automobile insurance. 

We enhanced to the group fused lasso by adding such constraints , 

whose optimal solution (෡𝜷, ෠𝜙) can be obtained by solving the 

following optimisation problem.

min
𝜷,𝜙,𝝃

−𝑙 𝜷, 𝜙 + 𝜅෍

𝑖=1

𝑝

෍
𝑢,𝑣 are
adjacent

𝛽𝑖𝑢
(1)

𝛽𝑖𝑢
(2)

−
𝛽𝑖𝑣
(1)

𝛽𝑖𝑣
(2)

2

s. t.
𝛽𝑖𝑢
(1)

𝛽𝑖𝑢
(2)

≥
𝛽𝑖𝑣
(1)

𝛽𝑖𝑣
(2)

Component-wise inequality

for sets of factor 𝑖 and adjacent pairs 𝑢, 𝑣
under ordinal constraints



Algorithm modified for ordinal constraints
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The constrained problem can be solved by the previous algorithm 

where the update formula of 𝝃𝑖, 𝑢,𝑣 for constrained set of factor 𝑖

and adjacent pairs 𝑢, 𝑣 are modified to:

𝝃𝑖, 𝑢,𝑣
𝑛𝑒𝑤 = ൞

1 −
𝜅

𝜼𝑖, 𝑢,𝑣
+

2

𝜼𝑖, 𝑢,𝑣
+

𝜌
if 𝜼𝑖, 𝑢,𝑣

+

2
> 𝜅

0 otherwise

where 𝜼𝑖, 𝑢,𝑣 = 𝜌 𝜷𝑖𝑢
𝑛𝑒𝑤 − 𝜷𝑖𝑣

𝑛𝑒𝑤 − 𝝀𝑖, 𝑢,𝑣 and

𝜼𝑖, 𝑢,𝑣
+ =

max 𝜂𝑖, 𝑢,𝑣
(1)

, 0

max 𝜂𝑖, 𝑢,𝑣
(2)

, 0
.

Component-wise positive part of 𝜼𝑖, 𝑢,𝑣



Example: Swedish motorcycle insurance
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We applied the modified method to claim data of the Swedish 

motorcycle insurance in Ohlsson and Johansson (2010). 

We used the following variables as rating factors :

𝑖 = 1 : The age of insured’s owner having 𝑛1 = 100 categories (0-99 years old).

𝑖 = 2 : The EV-rate class taking values from 1 to 𝑛2 = 7, and classified by so called   

the EV ratio (=engine output (kW) ÷ (vehicle weight (kg) + 75) × 100).

𝑖 = 3 : The city-size class taking values from 1 to 𝑛3 = 7, and classified by the scale 

and location of cities and towns (see details in the next slide).

𝑖 = 4 : The Bonus–malus class taking values from 1 to 𝑛4 = 7. The class starts from 

1 for a new driver, increases by 1 for each claim-free year, and decreases by

2 for each claim.

EV Class 1 2 3 4 5 6 7

EV ratio 0-5 6-8 9-12 13-15 16-19 20-24 25-



City-size classes

Class 1: central and semi-central parts of Sweden’s 

three largest cities, 

Class 2: suburbs plus middle-sized cities, 

Class 3: lesser towns (except those in 5 or 7), 

Class 4: small towns and countryside (except 5–7), 

Class 5: Northern towns, 

Class 6: Northern countryside, 

Class 7: Gotland (Sweden’s largest island).

17



Example: Swedish motorcycle insurance
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We applied the proposed model with the following constraints:

min
𝜷,𝜙,𝝃

−𝑙 𝜷,𝜙 + 𝜅෍

𝑖=1

4

෍

𝑘=2

𝑛𝑖

𝜷𝑖𝑘 − 𝜷𝑖 𝑘−1 2

s. t. 𝜷21 ≤ 𝜷22 ≤ 𝜷23 ≤ 𝜷24 ≤ 𝜷25 ≤ 𝜷26 ≤ 𝜷27,

𝜷41 ≥ 𝜷42 ≥ 𝜷43 ≥ 𝜷44 ≥ 𝜷45 ≥ 𝜷46 ≥ 𝜷47.

monotonicity for 
EV-rate classes

monotonicity for 
bonus-malus 
classes

Adjacency
graphs



Example: Swedish motorcycle insurance
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Owner’s age are integrated into 14 groups; young ages 0–24, 

widely ranged older ages 45–99, and eight of them around 30 

consist of single ages.

Expected claim frequency decreases monotonically along owner’s 

age whereas expected claim severity has its peak in late 20s. 

×
Relative expected 
claim frequency

Age Age Age

Relative expected 
claim severity =

Relative expected 
total claim cost
(pure premium)



Example: Swedish motorcycle insurance
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Though EV-rate classes are integrated into three groups, they have no 

difference in expected claim severity (ordinal constrains may have worked).

City-size classes 4-7 are united to one small risk group.

Bonus-malus classes are all united to one group, i.e. no significant 

difference in total claim cost is found among them.



Example: Swedish motorcycle insurance
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Finally, we consider interaction between city-size classes and 

bonus-malus classes with a two-dimensional adjacency graph.

Ordinal constraints are imposed to adjacent bonus-malus classes 

whereas no constraints to adjacent city-size classes.



Example: Swedish motorcycle insurance
22

Relative expected 
claim frequency

Relative expected 
claim severity

Relative expected 
total claim cost

In contrast to the previous 

analysis, differences in 

expected total claim cost 

are found between bonus-

malus classes (especially in 

city-size class 1).

In city-size class 3 and 5-7, 

expected claim severity 

drops at the highest bonus-

malus class.



Summary
23

We proposed a sparse regularisation method for insurance 

ratemaking to automatically clustering rating classes of risk 

factors into groups with the same risk levels.

We further enhanced the proposed method by adding 

ordinal constraints on categories in risk factors.

Our method is available for interaction of risk factors as well.

We demonstrated our method in the analysis of claim data 

from Japanese compulsory automobile liability insurance and 

Swedish motorcycle insurance.

Thank you for your attention!
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