

An Empirical Fairness Evaluation Framework for Al Models in Insurance: Balancing Fairness and Business Value

Yun-Tuan Chang

SPEAKER Cathay Life Insurance, Taiwan / Data analyst

Contents

01. About Cathay Life Insurance and the Speakers 02. Fairness Al In Insurance **03. Fairness Evaluation Framework and Methodology** 04. Empirical Results: Fairness-Performance Trade-off **05. Conclusion and Key Takeaways**

01. About Cathay Life Insurance and the Speakers

About Cathay Life Insurance

Company Snapshot

- Largest insurance company in Taiwan
- Offers individual life, health, unit-linked, and group insurance products

Awards & Recognition

IIC ASIA 2025	Insur-Innovator Connect Awards 2025
	Digital Transformation Trailblazer Award

2025 **ITC Asia Insurer Awards** (2025) Digital Transformation Trailblazer Award (2024) Data and Analytics Master Award

2024 &	Celent Model Insurer Awards
2023	Data, Analytics and Al

AIIA 2022 Digital Insurer of the Year

Al-powered Insurance and Actuarial Work

The demand for AI is growing day by day, and Cathay Life currently has over 40 AI products.

About the Speakers

Yun-Tuan Chang

Data Analyst, Data and AI Development Department

I-Hsiu Kao Data Scientist,

Data Scientist, Data and AI Development Department

Chia-An Wang

Senior Business Analyst, Data and AI Development Department

02. Fairness Al In Insurance

Key Question of Fairness Al in Insurance Rethinking Fairness for AI Models in Insurance: Why Sufficiency Matters **Fairness Evaluation Framework and Methodology**

Key Question of Fairness AI in Insurance

Importance of Fairness AI in Insurance Industry

Fairness in insurance is increasingly driven by regulatory pressure. Evaluating fairness is not just about metrics — it's key to model deployment, compliance risk management, and long-term business viability.

The Practical Challenge

However, there is often a trade-off between fairness and model performance. Improving fairness may reduce risk differentiation, while focusing solely on accuracy may overlook unequal impacts on certain groups. This presents a key challenge: how to strike a balance that ensures both regulatory compliance and business value.

Key Questions

Can we achieve a **balance between model accuracy and fairness** to meet the application needs of AI models in the insurance sector?

Rethinking Fairness for AI Models in Insurance: Why Sufficiency Matters

Aligning Fairness with Insurance Modeling Context

Fairness standard in machine learning is commonly categorized into independence, separation, and sufficiency (Barocas et al., 2019). In insurance AI, choosing the right fairness standard requires aligning with domain needs—models must estimate risk accurately, respect individual differences, avoid systemic bias, and adhere to actuarial principles, where premiums reflect actual risk.

Sufficiency supports fairness without sacrificing the core goal of insurance Al—accurate, risk-aligned prediction

- **Sufficiency** also known as well-calibrated prediction, evaluates whether predicted risk scores reflect actual risk equally across groups. It enables consistent, comparable predictions, supports bias detection, and aligns with actuarial fairness-making it wellsuited for both risk assessment and potential pricing applications in insurance.
- Independence evaluates outcome parity across groups, ignoring true risk. This conflicts with risk-based modeling and may misrepresent high-risk individuals as low-risk.
- **Separation** evaluates error rate parity across groups. This reduces precision in identifying individual risk, which is critical in actuarial decision-making.

Rethinking Fairness for AI Models in Insurance: Sufficiency Fairness Standard

What Counts as Fair Under the Sufficiency Standard?

We assess fairness using calibration-based metrics

- Calibration Curves show how well predicted risk matches actual outcomes
- **ECE (Expected Calibration Error)** quantify calibration quality

$$ext{ECE} = \sum_{i=1}^{K} rac{n_i}{n} \cdot | ext{acc}(B_i) - ext{conf}(B_i)|$$

 n_i : Number of samples in bin B_i . n: Total number of samples. $conf(B_i)$: Average predicted confidence in bin B_i .

Fairness under sufficiency means predictions are well-calibrated and consistent across all groups

- Lower ECE = better fairness
- ECE < 1% is considered well-calibrated (Guo et al., 2017)
- Group ECE differences should be small to ensure fairness across subpopulations

K: Number of bins used to partition the predicted probabilities (e.g., 10 bins).

 B_i : The *i*th bin, containing predictions with confidence scores falling into that bin's interval.

 $acc(B_i)$: Accuracy in bin B_i , i.e., the proportion of correct predictions.

Fairness Evaluation Framework for AI Models in Insurance

To assess the fairness of AI models applied in the insurance domain, we developed a Fairness Evaluation **Framework,** consisting of two main stages, followed by a Fairness-Performance Trade-off assessment:

01. Fairness evaluation

- Apply the sufficiency criterion to specific subgroups (e.g., age, region, category) identified by regulations or business concerns.
- Evaluate calibration within each group to determine whether the model treats them fairly.

02. Fairness improvement

- Data adjustment: Debias the dataset to ensure group balance
- **Post-prediction processing:** Adjust model outputs to improve group-level fairness

÷

03. Fairness Evaluation Framework and Methodology

Fairness evaluation:

Key Fairness Metrics

Fairness evaluation on Mortality Risk Identification Model

Fairness evaluation: Key Fairness Metrics

Sufficiency Fairness Criterion (Primary Indicators of Fairness)

■ Calibration Test: Ensures that predicted risk scores align with actual event rates within each group.

Input Data Check (Ensure the data itself doesn't introduce hidden bias)

- Chi-Square Test: Checks if the distribution of protected attributes is balanced, identifying potential data bias.
- Proxy Discrimination: Assesses the association between input variables (X) and model predictions (Y) to detect indirect bias.

Dimension	Suff	ficiency Fairness Crit
Mothod	$\label{eq:expected Calibration Error} ECE \ (\ Expected Calibration Error)$	F
Method	Calibration Curve	Unfair:

Dimension	Input D	ata (Supplementary
	Chi-Square test	•
Method	Proxy Discrimination	Min Categ Max Proxy Discrimin Max Proxy

erion

Fair: ECE < 1%, small group differences **Unfair:** ECE > 4–10%, large group gaps

Fair: Lines close to 45° across groups Systematic deviation from perfect calibration

Checks)

 $< 0.05 \rightarrow$ Suggests potential unfairness

gory Ratio: $< 0.05 \rightarrow$ Indicates severe imbalance ation P-Value: $< 0.05 \rightarrow$ Indicates proxy discrimination risk Coefficient: $< 0.1 \rightarrow$ Considered low association

Fairness evaluation: Mortality Risk Identification Model Overview

This model predicts mortality to segment health risks, identifying a 500% difference between high- and low-risk customers—enhancing both risk assessment and underwriting. Fairness is evaluated across two key group dimensions:

- Age Groups: Five-year age bands for individuals under 75
- Region: Taiwan's seven administrative regions

Model Structure

Model Type: LightGBM-based risk assessment model

Prediction Target: 9-year mortality risk

- **Data Foundation:**
 - X Variables: 367 features extracted from 8 variable categories
 - Sample Data: Historical records from 6.5 million policyholders

Model Output

- Mortality Probability (Risk Score, 0-1)
- (1 = low risk, 1000 = high risk)

Risk Segmentation: Tailored underwriting strategies for high- and low-risk groups **Underwriting Support**: High-risk customers flagged for additional medical screening

Labeling Method: Ranked by age and gender percentiles, assigned labels from 1 to 1000

Application

Fairness evaluation: Age Groups

Calibration Curve

São Paulo 2025

Examining Fairness in Input Data

Chi-Square P-Value	Min Category Ratio	Max Proxy Discri
0.0218	0.000000	0.0000

Calibration Error (ECE)

Group	Sample Size	Mortality Rate	ECE
0-4yr	179k	0.0007	0.0118
5-9yr	225k	0.0009	0.0165
10-14yr	287k	0.0021	0.0359
15-19yr	422k	0.0032	0.0515
20-24yr	473k	0.0036	0.0586
25-29yr	522k	0.0042	0.0655
30-34yr	666k	0.0069	0.0985
35-39yr	702k	0.0119	0.1512
40-44yr	593k	0.0191	0.2165
45-49yr	587k	0.0273	0.2832
50-54yr	610k	0.0377	0.3462
55-59yr	574k	0.0525	0.4163
60-64yr	479k	0.0784	0.5002
65-69yr	250k	0.1256	0.5875
70-74yr	146k	0.2110	0.6300

Overall Calibration Error (ECE): 0.2226

mination P-Value

Max Proxy Coefficient

00e+00

0.055450

Fairness evaluation: Regions

Calibration Curve

São Paulo 2025

Examining Fairness in Input Data

Chi-Square P-Value	Min Category Ratio	Max Proxy Dis
0.00000	0.0033	6.39

Calibration Error (ECE)

Region	Sample Size	Mortality Rate	ECE
Northern Region	1,790k	0.0270	0.2212
North-Central Region	1,103k	0.0260	0.2061
Central Region	1,324k	0.0286	0.2162
South-Central Region	980k	0.0334	0.2301
Southern Region	1,184k	0.0351	0.2421
Eastern Region	314k	0.0320	0.2214
Offshore Islands	22k	0.0253	0.1952

Overall Calibration Error (ECE): 0.2226

crimination P-Value

Max Proxy Coefficient

3852e-30

0.029141

Fairness evaluation: Conclusion

Fairness Evaluation Results of the Model

Evaluated Groups	Sufficiency Metric (Calibration Error /Curve)	Examining Input Data	Fairness Conclusion
Age Groups	High-age groups show elevated ECE (ECE ≥ 0.6), with clear deviation in calibration curves	Chi-Square P = 0.0 Proxy P = 0.0 Proxy Coef ≈ 0.055 → Significant proxy effect	Unfair
Regions	ECE ranges from 0.19 to 0.24, low variation and well-aligned calibration curves	Chi-Square P = 0.0 Proxy P = 6e-30 Proxy Coef ≈ 0.029 → Proxy effect present	Unfair

03. Fairness Evaluation Framework and Methodology

Fairness improvement: Experimental Design Experimental Results

Why Systematic Fairness Methods Matter

Emerging Fairness Challenges

- Traditional variables like age are manageable via business rules.
- Variables like region or income are harder to control.
- We explore scalable methods to support broader fairness needs.

Age as a Starting Point

- Well-understood in insurance practice.
- Provides a simple test case for evaluating fairness techniques.
- Methods tested on age may extend to more complex group variables.

Fairness improvement: Experimental Design

Experiments List

Processing Stage	Approach	Experiment ID	Description Main Objective	
Basel	ine	M0	Original model	Raw model without any pre- or post-processing
Data Droprocessing	Feature Filtering	MCF	Correlation Filtering	Remove features highly correlated with evaluated groups to reduce proxy bias
Data Preprocessing	Feature Smoothing	MDIR	DIR (all numeric variables)	Smooth numeric variables within groups for better statistical fairness
Post-processing	Model Calibration	MC-0	Baseline calibration model using M0 architecture	Trains on 16% less data than the original model to reserve enough samples for calibration
		MC-1	Group-based sigmoid calibration	Calibrate sigmoid curves for each group to improve ECE and reliability
		MC-2	Global sigmoid + group normalization	Apply global sigmoid calibration followed by group normalization for joint fairness
		MC-3	Group normalization + group sigmoid calibration	Normalize by group first, then apply group sigmoid for better stability and fairness

Fairness improvement: Data Preprocessing

Experiment Data Set

Fairness-Oriented Data Preprocessing: MCF vs. MDIR

Aspect	MCF – Correlation Filtering	
Core Strategy	Removes features highly correlated with evaluated groups	
Target Bias Type	Proxy bias	
Operation	Feature selection (filtering based on correlation threshold >0.3)	
Feature Handling	Risky features are removed (variables: 337)	

MDIR – Group-based Feature Smoothing

Smooths **numeric features(294)** within each group

Statistical distributional bias

Feature transformation (group-level normalization: repair level=1)

All features are retained and adjusted (variables: 367)

Input

Calibration

Results

Fairness improvement: Post-processing

AAI SECTIONS

Experiment Data Set (MC-0~3)

Validation & Calibration

Base model

MC-0

Group

15

Risk

Score

. . .

. . .

To enable post-hoc calibration, 20% of the original training set (16% of total data) was reserved, reducing the training size for MC-0~3 models compared to M0.

Calibration Experiments

All variables

from MC-0

Group

1

Risk

Score

MC-1

+

Group

2

Risk

Score

MC-3

Fairness improvement – Data Preprocessing

MCF

MDIR

MCF Overall Calibration Error (ECE): 0.2255

MDIR Overall Calib

MØ Overall Calibration Error (ECE): 0.2226

Overall Calibration Error (ECE): 0.2224

São Paulo 2025

Fairness improvement – Data Preprocessing

Group	Comple Cize	M0	MCF	MDIR	
	Sample Size	ECE	ECE	ECE	
70-74yr	146k	0.6300	0.6295	0.6283	0.6
65-69yr	250k	0.5875	0.5882	0.5866	
60-64yr	479k	0.5002	0.5023	0.5008	0.5
55-59yr	574k	0.4163	0.4200	0.4169	
50-54yr	610k	0.3462	0.3509	0.3466	0.4
45-49yr	587k	0.2832	0.2885	0.2833	
40-44yr	593k	0.2165	0.2218	0.2165	B 0.3
35-39yr	702k	0.1512	0.1551	0.1502	
30-34yr	666k	0.0985	0.1014	0.0984	0.2
25-29yr	522k	0.0655	0.0673	0.0653	0. 2
20-24yr	473k	0.0586	0.0596	0.0573	
15-19yr	422k	0.0515	0.0529	0.0518	0.1
10-14yr	287k	0.0359	0.0371	0.0356	
5-9yr	225k	0.0165	0.0170	0.0162	0. 0
0-4yr	179k	0.0118	0.0123	0.0120	

2

Fairness improvement – Post-processing

MC-1

MC-1 Overall Calibration Error (ECE): 0.0017

Calibration Curve (Sorted by Age) 0.5 o 0.6 20 0. 3 0.0 0.2 0.4 0.6 0.8 1.0 Predicted Risk Score

MC-2 Overall Calibration Error (ECE): 0.0182

Overall Calibration Error (ECE): 0.2226

MC-3

The calibration curve of the MC-3 model appears visually discontinuous and more volatile, mainly due to the compression of predicted values after group normalization and the smaller sample sizes in some groups.

Fairness improvement – Post-processing

Group	Comple Size	M0	MC-1	MC-2	MC-3
	Sample Size	ECE	ECE	ECE	ECE
70-74yr	146k	0.6300	0.0141	0.0965	0.0151
65-69yr	250k	0.5875	0.0111	0.0723	0.0104
60-64yr	479k	0.5002	0.0099	0.0497	0.0075
55-59yr	574k	0.4163	0.0094	0.0351	0.0041
50-54yr	610k	0.3462	0.0075	0.0259	0.0025
45-49yr	587k	0.2832	0.0065	0.0196	0.0014
40-44yr	593k	0.2165	0.0045	0.0139	0.0007
35-39yr	702k	0.1512	0.0035	0.0088	0.0006
30-34yr	666k	0.0985	0.0011	0.0051	0.0005
25-29yr	522k	0.0655	0.0003	0.0026	0.0005
20-24yr	473k	0.0586	0.0003	0.0024	0.0005
15-19yr	422k	0.0515	0.0003	0.0024	0.0003
10-14yr	287k	0.0359	0.0003	0.0018	0.0003
5-9yr	225k	0.0165	0.0001	0.0018	0.0001
0-4yr	179k	0.0118	0.0001	0.0015	0.0001

São Paulo 2025

26

Fairness improvement – Result

Fairness optimization for age groups shows that data preprocessing methods provide limited improvement in reducing prediction bias across groups. In contrast, post-processing strategies using group-specific sigmoid calibration—particularly MC-1 and MC-3—effectively reduce prediction bias for older age groups and narrow the calibration error gaps between age segments.

Experiment ID	Max ECE (G15)	Min ECE (G1)	Standard deviation of ECE across all groups	Whether fairness has improved
MO	0.6300	0.0118	0.2089	-
MCF	0.6295	0.0123	0.2090	No significant improvement
MDIR	0.6283	0.0120	0.2088	No significant improvement
MC-0	0.6247	0.0117	0.2141	_
MC-1	0.0141	0.0001	0.0046	Significant improvement
MC-2	0.0965	0.0015	0.0280	Some improvement
MC-3	0.0151	0.0001	0.0193	Significant improvement

04. Empirical Results: Fairness-Performance Trade-off

Evaluating the Fairness-Performance Trade-off: Model metrics Business metrics

Evaluating the Fairness-Performance Trade-off

Purpose

- To understand the range of performance shifts that may occur when improving fairness. •
- This enables better planning when aligning models with both regulatory and business expectations. •

Metrics Used

Both AUC and LIFT are compared before and after fairness optimization to understand how much performance is affected ٠ when pursuing fairness.

Metric Type	Metric Name	Purpose	
Model Metric	AUC (Area Under the ROC Curve)	Measures overall predictive accuracy	А р
Business Metric	LIFT (Mortality Segmentation)	Evaluates business relevance of predictions	
			E

Calculation / Interpretation

AUC closer to 1 indicates better discrimination between positive and negative cases

Compare mortality rate of high-risk group vs. overall \uparrow is better) and **low-risk vs. overall** (\downarrow is better) \rightarrow larger gap = better risk stratification

Example: High-risk mortality = 10%, overall = 2% \rightarrow LIFT = 5.0 (well-separated)

Fairness-Performance Trade-off – Baseline Model

M0 vs MC-0 Comparison

ão Paulo 2025

MCF AUC: 0.8871

São Paulo 2025

MDIR

M0 AUC: 0.8881 Male Mortality Rate: 4.63% Female Mortality Rate: 3.04%

Fairness-Performance Trade-off – Post-processing

São Paulo 2025

Fairness-Performance Trade-off - Conclusion

- **MC-3 showed the best trade-off,** achieving fairness improvement without sacrificing AUC, making it the most practical post-processing strategy.
- **Performance impact was more evident in younger age groups,** likely due to smaller sample sizes and lower event rates, which reduce calibration stability.
- **Recommendation:** Apply MC-3's combined calibration + normalization approach to younger groups to avoid score compression and improve risk discrimination.

Category	Model	AUC (Model Metric)	LIFT Value (Business Metric)	Fairness (Age Groups)	Trade-off Summary
Baseline	M0	0.8881	—	_	_
Pre-	MCF	0.8871	Stable	No significant improvement	Good performance but no fairness gain
processing	MDIR	0.8871	Stable	No significant improvement	Good performance but no fairness gain
Post- processing	MC-1	0.8754	Noticeable change at young groups	Significant improvement (G15 ECE = 0.0141/ Overall ECE: 0.0017)	Fairness improved with slight performance decrease
	MC-2	0.8764	Slight change	Moderate improvement (G15 ECE = 0.0965/ Overall ECE: 0.0182)	Balanced fairness and performance, minor performance drop
	MC-3	0.8872	Stable	Significant improvement (G15 ECE = 0.0151/ Overall ECE: 0.0013)	Fairness improved with nearly unchanged performance

05. Conclusion and Key Takeaways

Conclusion Key Takeaways

JOCC São Paulo 2025

Conclusion

Can we achieve a balance between model accuracy and fairness to meet the application needs of AI models in the insurance sector?

- Post-processing methods, especially MC-1 and MC-3, effectively reduced ECE in older age groups, validating the sufficiencybased fairness approach.
- MC-3 achieved substantial fairness improvement with minimal impact on model performance, demonstrating that fairness and predictive utility can coexist when appropriate strategies—like group-specific calibration with normalization—are applied.

Insurance AI models can be fair without sacrificing accuracy. With the right post-processing design, insurers can meet regulatory fairness standards while preserving model reliability.

Key Takeaways

Sufficiency is a practical fairness standard

Well-calibrated predictions align with actuarial principles and support risk-based insurance modeling.

Post-processing can effectively improve fairness

Group-specific calibration (e.g., MC-1, MC-3) reduces disparities without requiring model retraining.

Fairness and accuracy are not mutually exclusive

MC-3 demonstrated that fairness gains can be achieved with minimal performance trade-off.

A structured fairness framework aids responsible AI adoption Our two-stage evaluation and improvement process helps insurers ensure compliance and trustworthiness.

Thank you! Obrigado!

Questions?

Reference

Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and Machine Learning. Retrieved from https://fairmlbook.org

Luo, R., Bhatnagar, A., Bai, Y., Zhao, S., Wang, H., Xiong, C., Savarese, S., Ermon, S., Schmerling, E., & Pavone, M. (2023). Local calibration: Metrics and recalibration. *Proceedings of the 40th International Conference on Machine Learning (ICML 2023)*. Stanford University & Salesforce AI Research.

Xin, X., & Huang, F. (2023). Antidiscrimination insurance pricing: Regulations, fairness criteria, and models. *Journal of Insurance Issues*, 46(2), 285–319. <u>https://doi.org/10.1080/10920277.2023.2190528</u>

Baumann, J., & Loi, M. (2023). Fairness and risk: An ethical argument for a group fairness definition insurers can use. *Ethics and Information Technology*, 36, Article 45. https://doi.org/10.1007/s10676-023-09728-6

Appendix. Fairness improvement over Regions

Fairness improvement

Evaluating the Fairness-Performance Trade-off

Fairness improvement – Data Preprocessing

MCF

MCF Overall Calibration Error (ECE): 0.2237

MDIR

MØ Overall Calibration Error (ECE): 0.2226

Overall Calibration Error (ECE): 0.2211

Fairness improvement – Data Preprocessing

Group	Sample	M0	MCF	MDIR	0.24 -	
Group	Size	ECE	ECE	ECE	0.02	
E	1,184k	0.24215	0.24215	0.24065	0. 23 -	
D	980k	0.23005	0.23005	0.22864	0. 22 -	
F	314k	0.22143	0.22143	0.21941	ECE	
А	1,790k	0.22119	0.22119	0.21978	0.21 -	
С	1,324k	0.21615	0.21615	0.21467		
В	1,103k	0.20611	0.20611	0.20418	0. 20 -	
G	22k	0.19518	0.19518	0.19095	0.19 -	
						E

São Paulo 2025

Fairness improvement – Post-processing

MC-1

MC-2 Overall Calibration Error (ECE): 0.0181

Overall Calibration Error (ECE): 0.2226

MC-3

The calibration curve of the MC-3 model appears visually discontinuous and more volatile, mainly due to the compression of predicted values after group normalization and the smaller sample sizes in some groups.

Fairness improvement – Post-processing

Fairness improvement – Result

Fairness optimization for Regions shows that data preprocessing methods provide limited improvement in reducing prediction bias across groups. In contrast, post-processing strategies using group-specific sigmoid calibration—particularly MC-1 and MC-3—effectively reduce prediction bias.

Experiment ID	Max ECE	Min ECE	Standard deviation of ECE across all groups	Whether fairness has improved
MO	0.2421	0.1951	0.0235	-
MCF	0.2421	0.1951	0.0235	No significant improvement
MDIR	0.2406	0.1909	0.0249	No significant improvement
MC-0	0.2421	0.1951	0.0235	-
MC-1	0.0214	0.0031	0.0092	Significant improvement
MC-2	0.0215	0.0131	0.0042	Some improvement
MC-3	0.0018	0.00143	0.0002	Significant improvement

Fairness-Performance Trade-off – Preprocessing

MCF AUC: 0.8881

São Paulo 2025

MDIR

M0 AUC: 0.8881 Male Mortality Rate: 4.63% Female Mortality Rate: 3.04%

Fairness-Performance Trade-off – Post-processing

Fairness-Performance Trade-off - Conclusion

- MC-3 showed the best trade-off, achieving fairness improvement without sacrificing AUC, making it the most practical post-processing strategy.
- **Recommendation:** Apply MC-3's combined calibration + normalization approach to younger groups to avoid score compression and improve risk discrimination.

Category	Model	AUC (Model Metric)	LIFT Value (Business Metric)	Fairness (Age Groups) Trade-off Summary	
Baseline	M0	0.8881	—	—	—
Pre-	MCF	0.8881	Stable	No significant improvement	Good performance but no fairness gain
processing	MDIR	0.8881	Stable	No significant improvement	Good performance but no fairness gain
Post- processing	MC-1	0.8503	Noticeable change at young groups	Significant improvement (Overall ECE: 0.0135)	Fairness improved with slight performance decrease
	MC-2	0.8815	Slight change	Moderate improvement (Overall ECE: 0.0181)	Balanced fairness and performance, minor performance drop
	MC-3	0.8875	Stable	Significant improvement (Overall ECE: 0.0026)	Fairness improved with nearly unchanged performance

