

Cyber Risk: Quantification, Stress Scenarios, Mitigation, and Insurance

Laurent Devineau & Arthur Maillart, Detralytics

5th European Congress of Actuaries www.eca2024.org

ECA 2024

About the speaker

Laurent Devineau – Innovation Lead, Detralytics

Laurent is Innovation Lead at Detralytics. Previously, Laurent held the position of R&D Director within major consulting firms during almost 15 years. Before joining Detralytics, Laurent was head of on-site reviews within the Internal Models team of the French insurance supervisor (ACPR).

 Detralytics supports companies in the advancement of actuarial science and help them to solve their challenges. We guarantee to go beyond traditional consulting, by offering a unique combination of academic expertise, deep career and market knowledge.

About the speaker

• Arthur Maillart – Innovation Lead, Detralytics

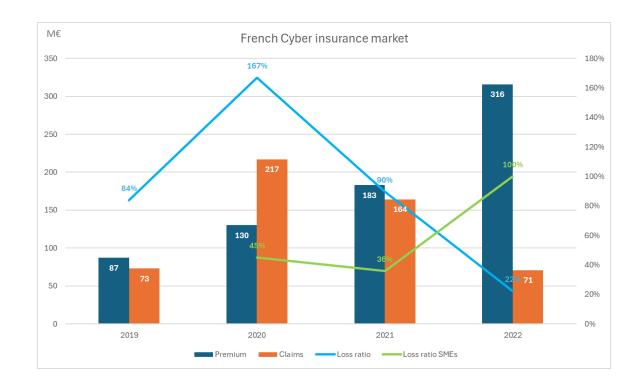
Arthur is Innovation Lead at Detralytics. Before joining Detralytics, Arthur wrote his PhD thesis on interpretable machine learning. Over the past three years at Detralytics, Arthur has developed his expertise in non-life modeling.

 Detralytics supports companies in the advancement of actuarial science and help them to solve their challenges. We guarantee to go beyond traditional consulting, by offering a unique combination of academic expertise, deep career and market knowledge.

- Introduction
- Portfolio composition
- Frequency model
- Volume of data compromised
- Focus on the business interruption
- Applications

Introduction

In full generality, cyber risk refers to a failure in the information systems leading to damages. This definition includes:


- Malicious events triggered by attacks from criminal groups:
 DDoS, Ransomware, Data breach, Cryptojacking, ...
- Non-malicious events
 - o Accidental data leak, Accidental deletion of data,...

Here we focus on malicious cyber.

French market figures and context

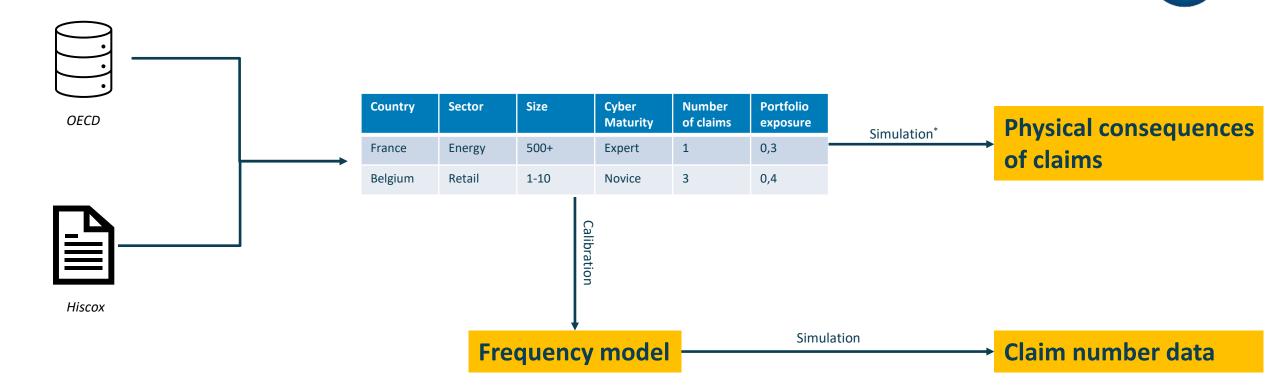
- As time passes, the French cyber insurance market continues to evolve and exhibit notable differences.
- In 2020, 4 claims from large companies accounted for 65% of the year's total claim amount. This shows that the French market is essentially driven by big companies.
- After 2020, insurers have opted for stricter conditions: higher premium rates and higher deductibles.
- This tightening of conditions reflects a lack of understanding of the risk.

LUCY report from AMRAE 2023: https://www.verlingue.fr/app/uploads/2023/05/amrae-lucy-2023.pdf

Lack of data

Data exist, for example:

- PRC and VERIS databases document personal data leaks,
- Annual reports from IBM and Hiscox monitor risks,
- Annual reports IBM, Flexera and Lloyd's document attacks on clouds and business interruptions,
- **NSFocus** 2022 report focus on DDoS.


Unfortunately:

- o Risks evolve rapidly and historical data can quickly become obsolete,
- Any database is potentially biased (US, big companies, ...),
- $\ensuremath{\circ}$ It is difficult to extrapolate severity.

We have developed a package that allows to simulate data and quickly adapt portfolio composition, distribution parameters and severity functions.

- Introduction
- Portfolio composition
- Frequency model
- Volume of data compromised
- Focus on the business interruption
- Applications

*Functions implemented from the our litterature review.

Modeling overview

- Introduction
- Portfolio composition
- Frequency model
- Volume of data compromised
- Focus on the business interruption
- Applications

Target properties for the frequency model

Cyber-attacks tend to increase the claim frequencies for policyholders sharing common characteristics without systematically resulting in additional claims. Hence, we want in our frequency model that:

- Companies from the same country share a common random effect,
- Companies from the same sector share a common random effect,
- Companies from the same country and sector share a common random effect,

Generalized Linear Mixed Models offer a convenient way to model such grouping structure.

Frequency model

The number of claims N_i for the i-th policyholder is modeled using a Poisson random variable with mean parameter $\lambda_i = -\log(1 - p_i)$. The value p_i is taken as:

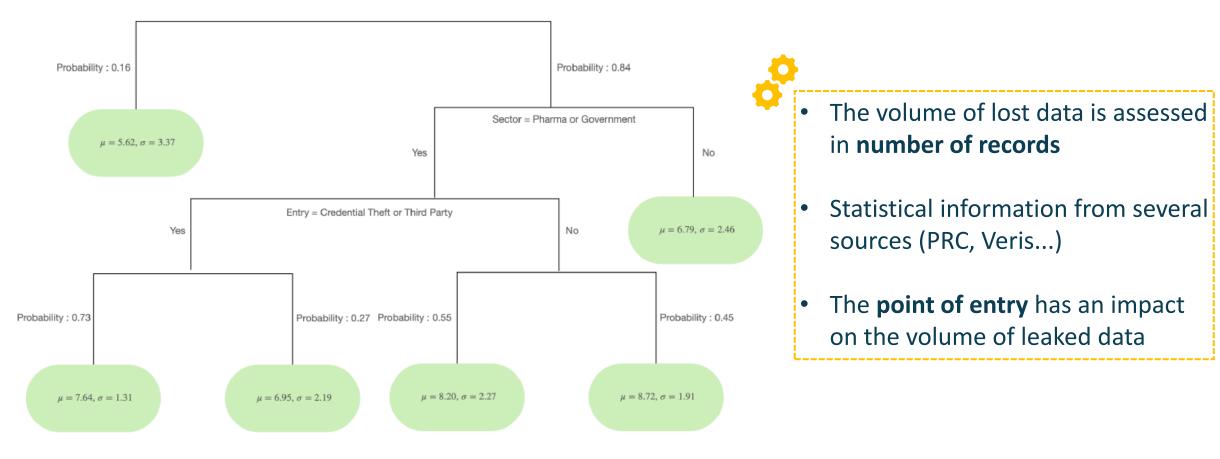
$$logit(p_i) = \alpha_i + \beta_0 + \beta^T X_i + \Delta_{country, i} + \Delta_{sector, i}$$

- α_i a parameter fitted at policyholder level,
- β_0, β^T the fixed effects weights,
- X_i is the vector of covariates,
- $\Delta_{country, i}$ the coordinate of $\Delta_{country}$ corresponding to the country of policyholder *i*,
- $\Delta_{sector, i}$ the coordinate of Δ_{sector} corresponding to the sector of policyholder *i*
- p_i is easiest to calibrate from available data.

Types of attack

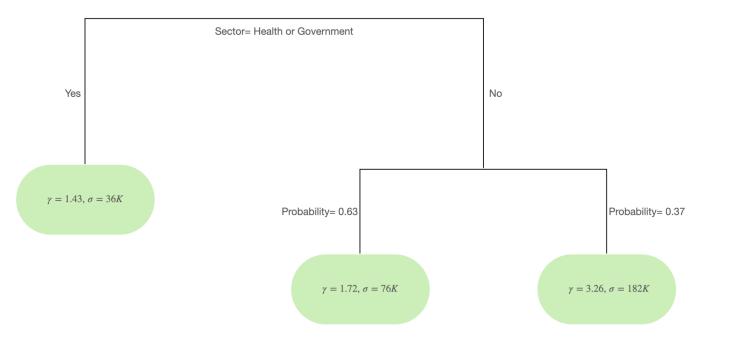
For each cyber event occurring in the simulated data, we need to define the type of attack. We denote by q the type of attack, and one (or more) entry point(s), denoted by v, except for DDoS attacks, for which we do not specify the entry point.

Type of attack q	Probability
DDoS	29.6%
Ransomware	17.6%
Loss of data (other than ransomware)	9.8%
Business e-mail compromise	30.8%
Other	12.2%


Entry point q	Probability
Phishing email	63%
Credential theft	44%
Third party	40%
Unpatched server	28%
Brute force server credential	17%

- Introduction
- Portfolio composition
- Frequency model
- Volume of data compromised
- Focus on the business interruption
- Applications

Volume of data compromised : attritional losses


• Modeling of attritional breaches based on mixture of LogNormal distributions

Adaptation of Farkas, Lopez, Thomas (2021)

Volume of data compromised : extreme losses

• Modeling of extreme breaches based on mixture of Pareto distributions

Adaptation of Farkas, Lopez, Thomas (2021)

- Breach size is not the only marker of severity (e.g. DDOS)
- Business Interruption

Generalized Pareto distribution with parameters (σ, γ) with $\gamma > 0$ and R > u

$$P(R - u \ge t) = \frac{1}{\left(1 + \frac{\gamma t}{\sigma}\right)^{1/\gamma}}$$

Financial losses can be tricky to deduce from the volume of
compromised data => possibility
to consider proxies. Below an example of a proxy design^(*):

 $\log(L) = \alpha + \beta . \log(R)$

(*) See Jacobs (2014) and Farkas et al. (2021)

- Introduction
- Portfolio composition
- Frequency model
- Volume of data compromised
- Focus on the business interruption
- Applications

Business interruption: DDoS attacks

The modeling of Distributed Denial Of Service (DDoS) attacks may rely on rate costs and duration parameters

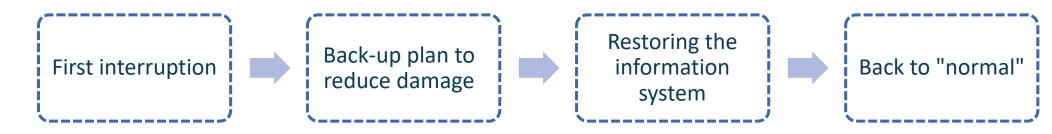
- Short interruption, usually less than a day
- DDOS attacks **don't** necessarily involve **compromised data**, but imply **high** and **variable interruption costs**

۲

• **Ponemon Institute** (2012) estimates the average cost at **\$22K/minute**

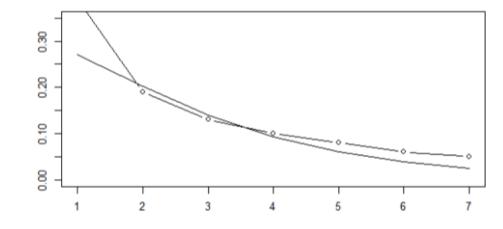
• The NSFocus report (2022) estimates the cost at between \$1 and \$100K/minute

Duration	< 5 min	5-10 min	10-60 min	1-12h	>12h
Probability	25%	36%	30%	7%	2%


Distribution of the duration of a DDOS attack - NSFocus, 2022

- In view of the rarity of these events,
 several assumptions must be considered
 in order to deal with this specific case
- Few statistics available on DDOS attacks
 lasting > 12h

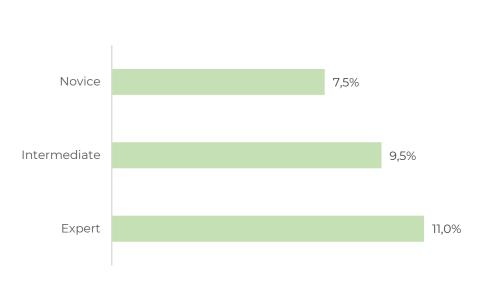
Business interruption: Long business interruption


The modeling of **Long business interruption** (ransomware, cloud unavailability...) may be based on **back-up plan** implementation and **restoration** assumptions

• Estimating the **business interruption** from **cloud interruptions**

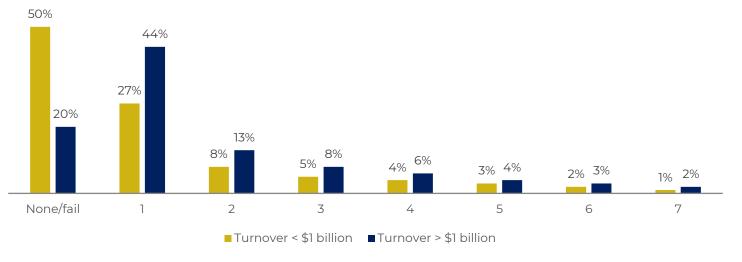
Duration	1	2	3	4	5	6	7	Gamma distribution
Probability	39%	19%	13%	10%	8%	6%	5%	

Time required (in days) to reach zero loss of information once the service to the cloud is restored - Lloyd's Cloud Down Impacts on the US economy



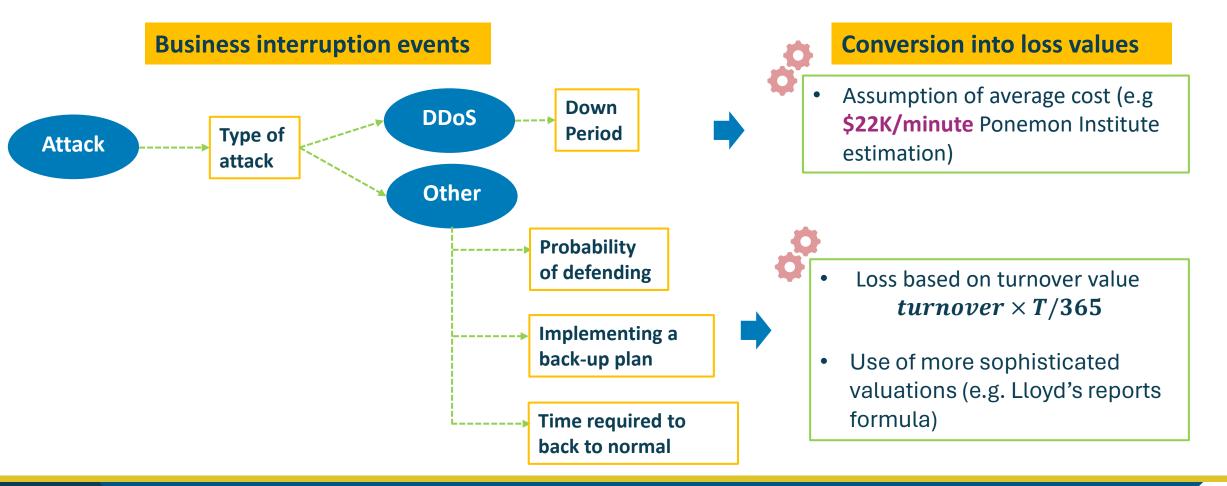
Calibration of a gamma distribution to capture longer interruptions

Business interruption: Long business interruption



Below assumptions of **ability to defend** against a Cyber attack and **back-up plan implementation**

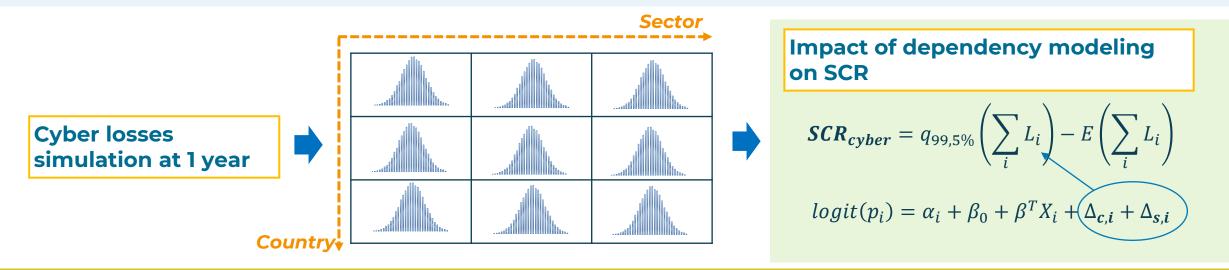
Probability of defending against an attack

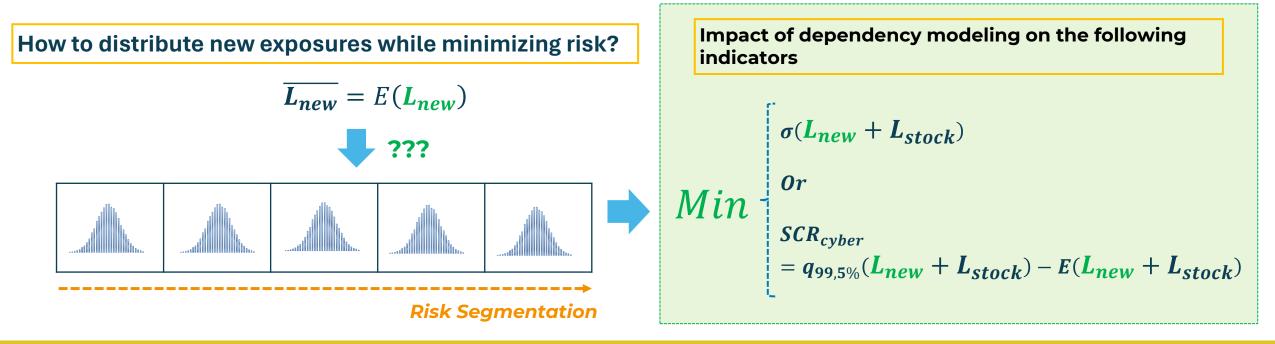

Probability of implementing a back-up plan with regards to a company's turnover

Lloyd's Cloud Down Impacts on the US economy

Focus on business interruption

Summary of **methodologies** allowing to generate **business interruption events** associated with different types of attacks:


- Introduction
- Portfolio composition
- Frequency model
- Volume of data compromised
- Focus on the business interruption
- Applications


Application #1: stress scenarios construction and application

- Application of the **Cyber events database** construction methodology to the **generation of stress scenarios** in various frameworks: calculation of a **Cyber SCR** within a **Solvency 2 Internal Model (IM)**, **ORSA multi-year adverse scenarios** construction,...
- Below the **main steps** to compute IM Cyber SCR:
 - Preliminary mapping of the insured portfolio according to the underlying segmentation of the cyber events database
 - (company size, Cyber maturity, country, sector)
 - Obtaining loss scenarios associated with the portfolio guarantees and adjusted by contractual parameters (eg deductibles)
 - Calculation of Cyber SCR using the generated scenarios

Application #2: optimizing exposures of cyber risk coverages

- **Objective**: for an insurance group offering Cyber coverages => **optimization of underwriting process** taking into account **underlying systemic risk** and **diversification limits**
- Methodology: the construction of Cyber scenarios allows to objectify / rationalize the weight of risk exposure of each segment (company size x Cyber maturity x country x sector), thereby minimizing the impact in terms of risk (SCR, loss volatility, etc.)

Thank you

Laurent Devineau Innovation Lead - Detralytics I.devineau@detralytics.eu

Arthur Maillart Innovation Lead - Detralytics a.maillart@detralytics.eu