

Combining GLMs with GBMs for the Best of Your Pricing Models

Piotr Lebiedź

ABOUT ME

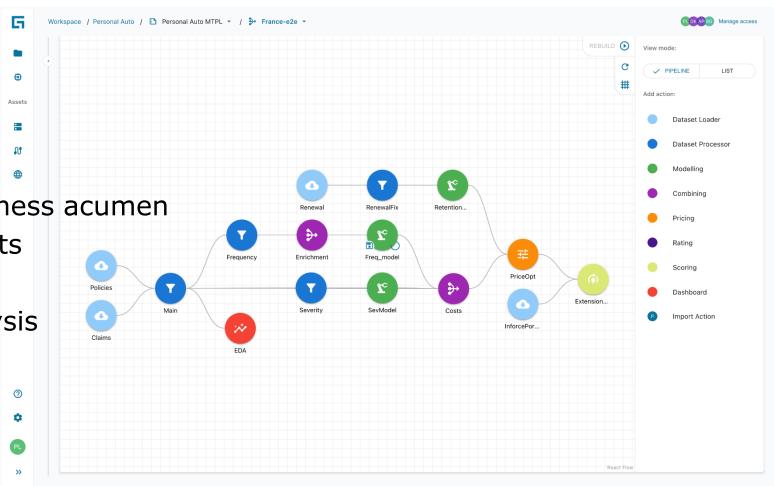
Piotr Lebiedź

Guidewire PricingCenter

- A seasoned pricing actuary, serving as Pricing
 Manager at Guidewire, driving adoption of a new
 pricing solution Guidewire PricingCenter across
 the globe.
- Specialized in empowering pricing leaders with the insights and tools necessary to navigate the everevolving pricing landscape.
- A passionate advocate for next-generation insurance pricing, committed to bridging actuarial expertise with cutting-edge technology to drive innovation across the industry.
- A university lecturer leading the actuarial path at Gdańsk University of Technology (Gdańsk, Poland).

- 1. Quick intro to insurance pricing
- 2. GLM vs. GBM comparison
 - definition and concept
 - ii. strengths and weaknesses
 - iii. typical applications in insurance pricing
- 3. GLM & GBM hybrid approach
 - GBM helping in variable selection for GLM
 - ii. GBM as input to GLM
 - iii. GLM as input to GBM
 - iv. GLM residuals corrected by GBM
 - v. GLM and GBM ensembled
- 4. Key takeaways

1. Quick intro to insurance pricing


- 2. GLM vs. GBM comparison
 - definition and concept
 - ii. strengths and weaknesses
 - iii. typical applications in insurance pricing
- 3. GLM & GBM hybrid approach
 - GBM helping in variable selection for GLM
 - ii. GBM as input to GLM
 - iii. GLM as input to GBM
 - iv. GLM residuals corrected by GBM
 - v. GLM and GBM ensembled
- 4. Key takeaways

Insurance pricing aims to calculate fair price for particular risk transfer

Insurance pricing consists of:

- Data wrangling
- Data exploration
- Product understanding
- Risk modeling
- Expert judgement and business acumen
- Forward-looking adjustments
- Market analysis
- Competitor landscape analysis
- Price optimization
- Frequent price updates
- Constant monitoring
- And more...

- 1. Quick intro to insurance pricing
- 2. GLM vs. GBM comparison
 - definition and concept
 - ii. strengths and weaknesses
 - iii. typical applications in insurance pricing
- 3. GLM & GBM hybrid approach
 - GBM helping in variable selection for GLM
 - ii. GBM as input to GLM
 - iii. GLM as input to GBM
 - iv. GLM residuals corrected by GBM
 - v. GLM and GBM ensembled
- 4. Key takeaways

Definition and concept

GLM

- Full name: Generalized Linear Model
- Category: Linear estimator
- Domain: Identifying, quantifying, and combining independent univariate signals

GLM formula:

$$g(E(Y)) = X\beta$$

where:

g is a link function

E(Y) is the expected value of the response variable Y

X is a matrix of predictor variables,

 β is a vector of coefficients

GBM

- Full name: Gradient Boosting Machine
- Category: Tree-based estimator
- Domain: Identifying multivariate dependencies and microsegments
- Ensemble learning method: Boosting

GBM builds decision trees iteratively and corrects their combined errors on the way. Thanks to a gradient descent algorithm it minimizes the loss when adding new models.

Strengths and weaknesses

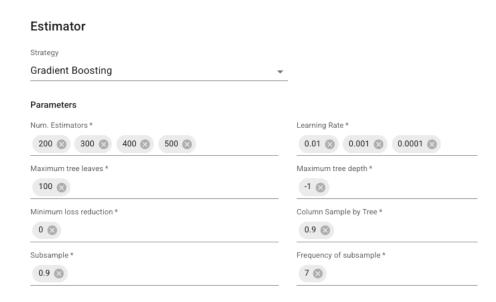
GLM

- Well-known and market standard
- + Transparent formula once trained
- Easily ingested by rating engines
- Quick in real-time quoting
- Limited accuracy
- Assumes linearity
- Assumes feature independence
- Long time to build
- Subject to confirmation bias

GBM

- Best-in-class accuracy
- Natively catches non-linearity
- Finds interactions and microsegments
- + Quick setup, little feature transformations
- Less-known and less-practiced
- Lack of transparency (black-box)
- Requires advanced engine for prod use
- Significant latency in real-time quoting
- Requires more data and is easier to overfit

Typical applications in insurance pricing


GLM

- Risk models
- 2. Demand/elasticity models
- 3. Other models (churn, market price)

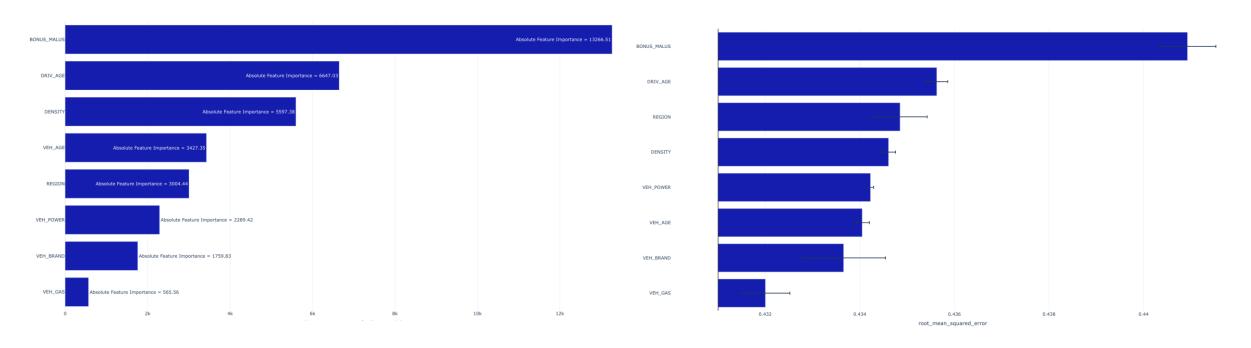
Feature	Ý 8	ê ^ ê	Coefficient	Relativity	Std. Error	p-value ⊔	Significance
INTERCEPT			-3.127	0.044	0.054	<.001	***
ures							
BONUS_MALUS							
BONUS_MALUS.BIN=[-i	inf;51.5)		0	1			
BONUS_MALUS.BIN=[5	51.5;68.5)		0.619	1.858	0.019	<.001	***
BONUS_MALUS.BIN=[6	8.5;72.5)		0.687	1.987	0.039	<.001	***
BONUS_MALUS.BIN=[7	72.5;76.5)		0.739	2.093	0.040	<.001	***
BONUS_MALUS.BIN=[7	76.5;85.5)		0.851	2.342	0.030	<.001	***
BONUS_MALUS.BIN=[8	35.5;95.5)	ê	0.895	2.447	0.032	<.001	***
BONUS_MALUS.BIN=[9	95.5;inf)	BONUS_N	MALUS.BIN=[85.5;95.	5.160	0.028	<.001	***
DENSITY							

GBM

- 1. Residual risk models
- 2. Market price models
- 3. Other models (risk, demand, churn)

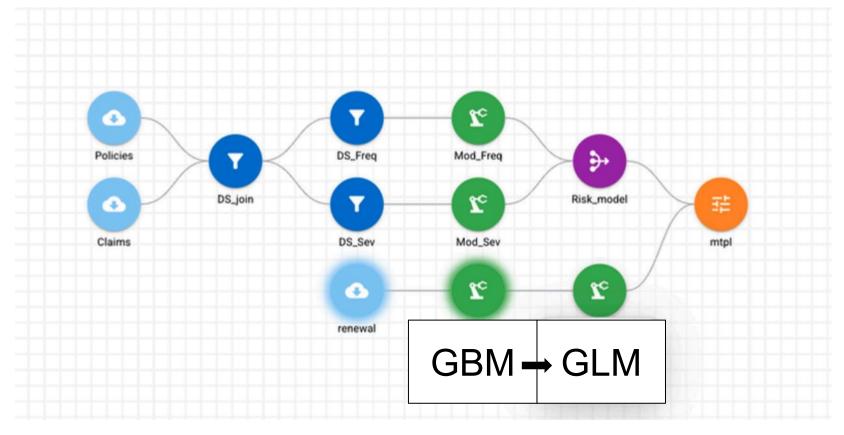
- 1. Quick intro to insurance pricing
- 2. GLM vs. GBM comparison
 - definition and concept
 - ii. strengths and weaknesses
 - iii. typical applications in insurance pricing

3. GLM & GBM – hybrid approach

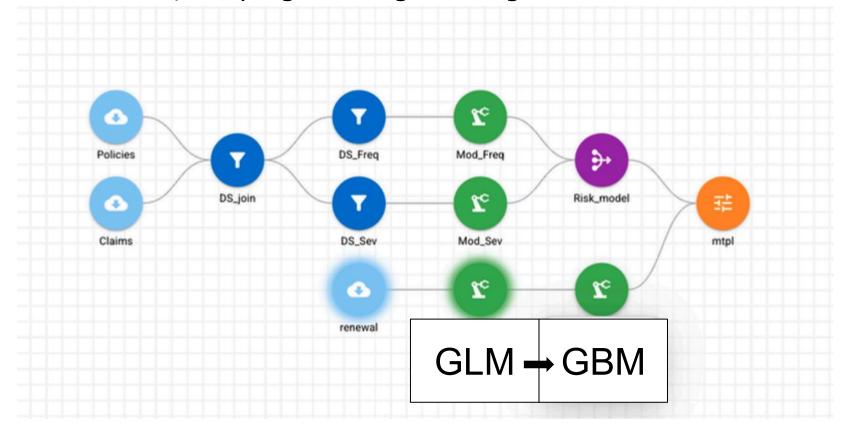

- GBM helping in variable selection for GLM
- ii. GBM as input to GLM
- iii. GLM as input to GBM
- iv. GLM residuals corrected by GBM
- v. GLM and GBM ensembled
- 4. Key takeaways

GBM helping in variable selection for GLM

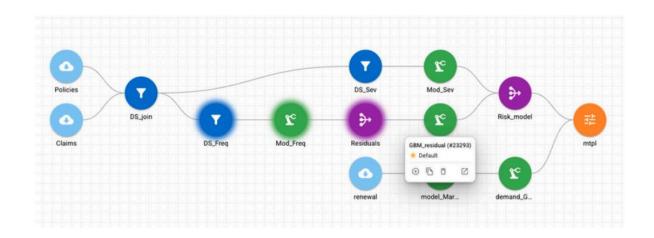
Tree-based feature importance


Model agnostic variable importance

GBM as input to GLM


- Prediction = GLM(GBM, x1, x2, x3,)
- Controlled impact of GBM

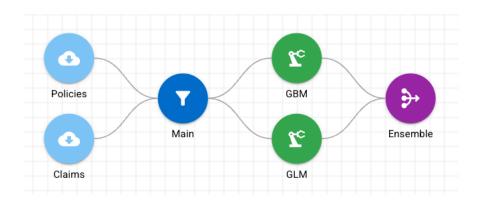
GLM as input to GBM


- GBM's behavior controlled by adding predictions from GLM as input
- Allowing GBM to find more nuances, keeping the original target distribution



GLM residuals corrected by GBM

- 1. Fit GLM and get predictions y_{GLM}
- 2. Compute residuals: actual value prediction
- 3. Train GBM on residuals (loss matching distribution of residuals) and get predictions \bar{y}_{GBM}
- 4. Update predictions: $y_{GLM} + \bar{y}_{GBM}$





GLM and GBM ensembled

- 1. Fit GLM and get predictions y_{GLM}
- 2. Fit GBM and get predictions y_{GBM}
- 3. Choose weights w between 0 and 1
- 4. Final predictions: $w \cdot y_{GLM} + (1 w) \cdot y_{GBM}$

- 1. Quick intro to insurance pricing
- 2. GLM vs. GBM comparison
 - definition and concept
 - ii. strengths and weaknesses
 - iii. typical applications in insurance pricing
- 3. GLM & GBM hybrid approach
 - GBM helping in variable selection for GLM
 - ii. GBM as input to GLM
 - iii. GLM as input to GBM
 - iv. GLM residuals corrected by GBM
 - v. GLM and GBM ensembled

4. Key takeaways

To summarise

- GLM and GBM are different tools in the actuarial toolkit
- GLM assesses individual signals well and is fully transparent
- GBM easily finds multivariate dependencies and microsegments but is 'black-box'
- GLM requires more actuarial expertise, while GBM requires data science rigour
- There is no 'better' or 'worse' between them
- They have different advantages and may serve different purposes
- One person or team can use both, either separately for different cases, or...
- ... combine them for the same task to leverage the best of both
- Best-in-class pricing solutions are capable of building both kinds of models, applying a hybrid approach, and deploying them seamlessly to production

Thank you!

Please rate the conference via the survey-link you will receive per email.

Visit our website

www.actuarial-academy.com

for more events.

Follow us on LinkedIn

www.linkedin.com/company/642904

for updates & actuarial fun.