ernal

DAV/DGVFM Jahrestagung 2025

Michael. Klamser, Allianz Versicherungs AG

Anwendung der quantilen Regression bei Großschäden – ein Beispiel aus der Praxis

ASTIN Jahrestagung 2025, Bonn - 29.4.2025

Disclaimer

- Alle Zahlen bzw. Auswertungsergebnisse in den nachfolgenden Folien, welche sich auf den Allianz Flottenbestand beziehen, entsprechen nicht den Daten in der Wirklichkeit.
- Dessen ungeachtet entsprechen die Aussagen sowie Ableitungen denjenigen, die auf den reellen Daten beruhen.

Glossary

• KH: Kraft Haftpflicht

GS: Großschaden

• **SP:** Stichprobe (**T-SP:** Test-Stichprobe, **V-SP:** Validierungs-Stichprobe)

• Fahrzeugartengruppen: z. B. Pkw, Lkw, Zugmaschinen, Anhänger...

GLM: Generalized Linear Model

Vorwort	•
Großschäden als Teil der cred-Kalkulation in KH	
Die quantile Regression	(
Das quantile Selektionsverfahren	4
Validierung der Modelle	ļ
Ausblick	(

Vorwort	1
Großschäden als Teil der cred-Kalkulation in KH	2
Die quantile Regression	3
Das quantile Selektionsverfahren	4
Validierung der Modelle	5
Ausblick	6

1. Vorwort

Vorwort	
Großschäden als Teil der cred-Kalkulation in KH	2
Die quantile Regression	3
Das quantile Selektionsverfahren	2
Validierung der Modelle	5
Ausblick	6

2. Großschäden als Teil der cred-Kalkulation in KH

Prämissen:

- Credibility-Verfahren für Großflotten in KH
 - Basis-Layer: Schäden bis 20.000 EUR
 - Excess-Layer 1: Schäden 20.000 150.000 EUR
 - Excess-Layer 2: Schäden ab 150.000 EUR.
- ➤ Tarif existiert für den 1. Excess-Layer (S.häufigkeit und S.durchschnitt) (auf Basis ein paar weniger Covariates z. B. Fahrzeugartengruppe)
- Kalkulation des Tarifs für S.durchschnitt wurde durchgeführt mittels GLM.

2. Großschäden als Teil der cred-Kalkulation in KH

Motivation, "etwas Neues" auszuprobieren:

Minimum	10%-Q.	10%-Q. 25%-Q. Median 75%-		75%-Q.	90%-Q.	Maximum
28.126	29.405	29.901	30.215	31.041	31.544	35.033

→ Für 80 % aller Tarifzellen unterscheidet sich der GS-Schadendurchschnitt um gerade mal 2.000 EUR.

Quantil	S.durchschnitt (gemessen)	S.durchschnitt (modelliert mit GLM)					
50%	34.292	30.215					
70%	38.279	30.840					
80%	42.065	31.296					
90%	49.794	31.544					

→ GLM nicht geeignet für die Modellierung von GS-Quantilen.

Umfrage!!

- 1) Ab welcher Schadenhöhe mussten Einzelschäden ausgeschlossen werden, um überhaupt eine quantile Regression noch durchführen zu können?
 - o 150.000 EUR
 - o 500.000 EUR
 - o ohne Begrenzung

Umfrage!!

- 2) Bis zu welchem Quantil konnte mindestens 1 signifikantes Risikomerkmal identifiziert werden (d. h war eine Modellierung überhaupt noch möglich)?
 - o 80 %-Quantil
 - o 90 %-Quantil
 - o 95 %-Quantil

Umfrage!!

- 3) Welche der folgenden Transformationen eines signifikanten Risikomerkmals wurde ebenfalls als signifikant erkannt?
 - Lognormal
 - Inverse
 - Wurzel
 - Keine der Aufgeführten (d. h. nur linearer Zusammenhang)

Vorwort	1
Großschäden als Teil der cred-Kalkulation in KH	2
Die quantile Regression	3
Das quantile Selektionsverfahren	4
√alidierung der Modelle	5
Ausblick	6

3. Die quantile Regression

Vorteile:

- ➤ Nicht-parametrischer Ansatz → Verteilungsannahmen nicht erforderlich.
- Quantile/Spannbreiten sind deutlich robuster als Mittelwert/Varianz
 - → geringere Sensitivität ggü. Ausreißern.
- Quantile Regression besonders sinnvoll, wenn die Daten "heterogen" sind
 - → Der "Mittelbereich" als auch die "Tails" variieren von Quantil zu Quantil in Abhängigkeit von den Covariates.
- Man erhält ein vollständigeres Bild der Verteilung, wenn mehrere Quantile gleichzeitig modelliert werden.

3. Die quantile Regression

Prozedere (s. a. SAS/STAT, "Overview for quantile regression-procedure") - 1:

- Gegeben sei eine Zufallsvariable Y mit Verteilungsfunktion $F(y) = P(Y \le y)$ das Quantil τ von Y ist definiert mittels der inversen Funktion $Q(\tau) = \inf\{y \colon F(y) >= \tau\}$.
- Sei $\xi(\tau)$ das **allgemeine** τ -Stichprobenquantil (das Analogon zu $Q(\tau)$), dann gilt: $\xi(\tau) = \arg\min_{\xi \in \mathbb{D}} \sum_{i=1}^{n} \rho_{\tau}(y_i \xi)$ wobei $\rho_{\tau}(z) = z^*(\tau I(z < 0)), 0 < \tau < 1$ die sog. "Loss-function" und $I(\bullet)$ die Indikatorfunktion bezeichnet.
- ▶ Die "Loss-function" $ρ_τ$ vergibt ein Gewicht τ an die positiven Residuen $y_i ξ$ und ein Gewicht von1−τ an die respektiven negativen Residuen.

3. Die quantile Regression

Prozedere (s. a. SAS/STAT, "Overview for quantile regression-procedure") - 2:

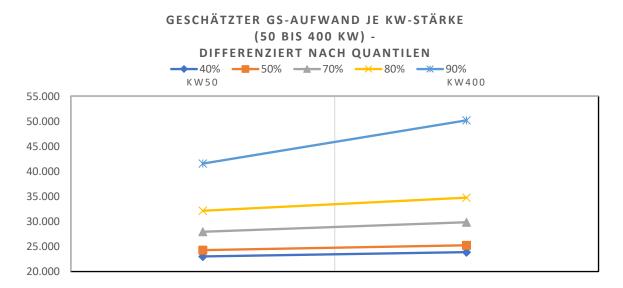
- Unter diesen Prämissen schätzt die aktuelle quantile Regression die bedingte lineare Quantil-Funktion $Q_Y(\tau; X = x) = x'\beta(\tau)$ mittels Auflösens folgender Gleichung für $\tau \in (0,1)$: $\hat{\beta}(\tau) = \arg\min_{\beta \in \mathbb{D}^n} \sum_{i=1}^n \rho_{\tau}(y_i x_i'\beta)$.
- \triangleright Dabei wird $\hat{\beta}(\tau)$ das τ **Regressionsquantil** genannt.
- ▶ Die Folgende Menge an Regressionsquantilen wird auch "Quantilprozess" genannt: $\{\beta(\tau): \tau \in (0,1)\}$.

Vorwort	1
Großschäden als Teil der cred-Kalkulation in KH	2
Die quantile Regression	3
Das quantile Selektionsverfahren	4
Validierung der Modelle	5
Ausblick	6

Prämissen:

- Nur <u>Einzelschäden</u> zwischen 20.000 und 150.000 EUR wurden berücksichtigt (<u>Zeitraum:</u> 2016-2022).
 - → keine Anpassung aufgrund Inflation!
- Liste der untersuchten <u>Risikomerkmale</u>(s. Auflistung links):

	Risikomerkmale
1	Hubraum (in ccm)
2	Typklasse
3	kw-Stärke
4	Jahr der Erstzulassung
5	Jahr der Akquise
6	Wirtschaftsbranche
7	Zahlungsweise


Quantil	signifikantestes Merkmal	Anzahl Großschäden	Chi-Quadrat	alpha	Intercept	linearer Schätzer	Standard- error
40%	kw-Stärke	16.015	10,14	0,2%	22.895	2,465	0,3973
50%	kw-Stärke	16.015	6,97	0,8%	24.140	2,7738	0,5961
60%	Jahr der Erstzulassung	17.818	7,93	0,5%	26.453	-0,5612	0,0927
70%	kw-Stärke	16.015	21,85	<.0001	27.673	5,4507	0,9093
80%	kw-Stärke	16.015	12,3	0,1%	31.770	7,4829	1,7917
90%	kw-Stärke	16.015	20,07	<.0001	40.329	24,7019	5,2454

- → Modellierung des GS-Aufwands nur sinnvoll/möglich für die Quantile 40 % bis 90 %.
- → Mit steigendem Quantil steigt auch der lineare Schätzer.
- → Das Risiko für Großschäden oberhalb des allgemeinen GS-Durchschnitts steigt überproportional für hochmotorisierte Fahrzeuge.

Ergebnis – Selektion des signifikantesten Merkmals (40 % bis 90 %-Quantil – ex 60 %)

→Ein Graph sagt mehr als 1000 Worte... (manchmal)

Ergebnis – Selektion des zweit-signifikantesten Merkmals

- > Transformationen der kw-Stärke $(x^2, \frac{1}{x}, \ln(x), \sqrt{x})$ führte zu keiner Verbesserung.
- Stattdessen wurde nach dem zweit-signifikantesten Merkmal "gefahndet"…

Quantile	signifikantestes Merkmal	zweit-signifikantestes Merkmal	SP-Volumen	t-Statistik	alpha	Intercept	linearer Schätzer	Standard error
40%		Jahr der Erstzulassung	16.015	15,62	2,3%	23.137	-1,3507	0,0662
80%	kw-Stärke	Jahr der Erstzulassung	16.015	27,12	0,6%	32.931	-1,9283	0,2635
90%		Jahr der Erstzulassung	16.015	26,23	2,5%	42.569	-2,5246	0,5913

→ Je älter das Fahrzeug, desto größer die Tendenz für überdurchschnittlich hohe GS.

Vorwort	1
Großschäden als Teil der cred-Kalkulation in KH	2
Die quantile Regression	3
Das quantile Selektionsverfahren	4
Validierung der Modelle	5
Ausblick	6

Prämissen:

- ➤ Modellierung/Validierung auf Basis einer 80/20 %-Stichprobe (einfachster Zufallsgenerator mittels PROC SURVEYSELECT)
 - → Vermeidung von Overfitting,
- Check auf <u>Zeitkonsistenz</u> mittels Backtesting-Verfahren (<u>Datenbasis</u>: 2023),
- ➤ Durchführung der Tests für das 80 %- und 90 %-Quantil in tutto bzw. differenziert nach kw-Gruppe.

a.) Goodness of Fit für Test-Stichprobe (T-SP) vs Validierungs-Stichprobe (V-SP) - 1:

a.1.) Zusammensetzung von T-SP und V-SP + Goodness-of-Fit (80 %-Quantil):

	S.anzahl	10 %-Quantil	25 %-Quantil	Median	75 %-Quantil	90 %-Quantil	80 % Quantil (Mittelwert gemäß Modell)	80 % Quantil (gemessener S.aufwand)
Test-SP	16.015	31.964	32.137	32.804	33.680	34.069	33.009	32.938
Validierungs-SP	3.982	31.963	32.133	32.888	33.681	34.015	33.009	33.190

grün → Zusammensetzung von T-SP und V-SP sind praktisch identisch.

orange → Goodness-of-Fit für beide Stichproben ist exzellent.

a.) Goodness of Fit für Test-Stichprobe (T-SP) vs Validierungs-Stichprobe (V-SP) - 2:

a.2.) Zusammensetzung von T-SP und V-SP + Goodness-of-Fit (90 %-Quantil):

	S.anzahl	10 %- Quantil	25 %- Quantil	Median	75 %- Quantil	90 %- Quantil	90 % Quantil (Mittelwert gemäß Modell)	90 % Quantil (gemessener S.aufwand)
Test-SP	16.015	41.597	42.176	44.076	47.248	48.245	44.673	44.684
Validierungs-SP	3.982	41.597	42.168	44.098	47.249	48.245	44.687	45.976

grün → Zusammensetzung von T-SP und V-SP sind auch hier praktisch identisch.

orange → Goodness-of-Fit für beide Stichproben ist immer noch sehr zufriedenstellend.

a.) Goodness of Fit für Test-Stichprobe (T-SP) vs Validierungs-Stichprobe (V-SP) - 3:

a.3.) Goodness-of-Fit (90 %-Quantil) – differenziert nach kw-Gruppe:

		Test-Stichprobe)	Validierungs-Stichprobe		
kw-Gruppe	S.anzahl	90 % Quantil (Mittelwert gemäß Modell)	90 % Quantil (gemessener S.aufwand)	S.anzahl	90 % Quantil (Mittelwert gemäß Modell)	90 % Quantil (gemessener S.aufwand)
bis 100 kw	4.453	42.062	41.837	1.142	42.088	40.140
100 bis 200 kw	5.790	43.738	43.063	1.366	43.694	44.596
200 bis 300 kw	1.251	46.228	46.579	290	46.060	56.455
ab 300 kw	4.521	48.011	48.843	1.184	48.002	51.011

grün → <u>T-SP:</u> Goodness-of-Fit ist für alle kw-Gruppen exzellent.

orange → V-SP: Goodness-of-Fit bis auf 1 Ausnahme für alle kw-Gruppen (sehr) zufriedenstellend.

b.) Backtesting (Zeitkonsistenz) - Datenbasis: 2023

b.1.) für den Quantilprozess "40 bis 90 %-Quantil"

Quantil	x %-Quantil (Mittelwert gemäß Modell 2022)	x %-Quantil (gemessener S.aufwand 2023)
40%	23.134	23.104
50%	24.431	24.508
60%	26.019	26.196
70%	28.457	29.000
80%	32.925	33.010
90%	44.494	42.000

→ Zeitkonsistenz verschlechtert sich leicht, ist aber selbst für das 90 %-Quantil unterm Strich noch zufriedenstellend.

b.) Backtesting (Zeitkonsistenz) - Datenbasis: 2023

b.2.) differenziert nach kw-Gruppe – für 80 % und 90 %-Quantil

		80%-Q	uantil	90%-Quantil		
kw-Gruppe	S.anzahl	x % Quantil (Mittelwert gemäß Modell 2022)	x % Quantil (gemessener S.aufwand 2023)	x % Quantil (Mittelwert gemäß Modell 2022)	x % Quantil (gemessener S.aufwand 2023)	
bis 100 kw	894	32.151	32.466	41.943	40.829	
100 bis 200 kw	1.272	32.694	32.586	43.631	42.120	
200 bis 300 kw	282	33.458	33.606	46.118	40.000	
ab 300 kw	831	33.930	34.574	48.006	43.145	

→ 80 %-Quantil: Zeitkonsistenz ist exzellent für alle kw-Gruppen.

→ 90 %-Quantil: Zeitkonsistenz ist (sehr) zufriedenstellend bis 200 kw.

Vorwort	1
Großschäden als Teil der cred-Kalkulation in KH	2
Die quantile Regression	3
Das quantile Selektionsverfahren	4
Validierung der Modelle	5
Ausblick	6

6. Ausblick

Möglicher Anwendungsbereich der hier gewonnenen Erkenntnisse:


- <u>Pricing:</u> Verbesserung der Vorhersagegüte von Großschadendurchschnitten auf Flottenebene
- Vollmachten:
 Gezieltere Vergabe von Nachlässen bei Flotten mit einer geringeren Großschadenneigung.

Offener Punkt:

"Bewertung" einer ganzen Flotte auf Basis eines modellierten Quantilprozesses (insbesondere Umgang mit Risiken, wo z. B. kw nicht zur Verfügung steht → Anhänger).

DAV/DGVFM

Jahrestagung

2025

Vielen Dank für Ihre Aufmerksamkeit.

Michael Klamser, Allianz Versicherungs AG Königinstr. 28, 80802 München

DAV/DGVFM Jahrestagung 2025

Besuchen Sie unsere Webseite

www.aktuar.de