

Crop Classification with SAR Data and Deep Learning Algorithms: A Method for Areas with Limited Labels and High **Cloud Cover**

IRB(P&D)

Raul Lomonte Figueiredo

Research Data Scientist | IRB(P&D)

Motivation – Crop Insurance Context

Importance of agriculture

2024 TRADE BALANCE

Brazilian agribusiness reaches historic milestone in global food security

Growth in strategic sectors and market diversification strengthen Brazil's position as a global supplier of food, fiber, and energy

Published in Feb 03, 2025 05:13 PM

demonstrating its resilience despite declining international prices for some major commodities.

Share: **f** in 🕓 🔗

razilian agribusiness exports totaled USD 164.4 billion in 2024, marking the second-highest

value on record. The sector accounted for 49 percent of the country's total exports,

Motivation – Crop Insurance Context

IRB(P&D)

- Importance of agriculture
- High volatility
- High climate sensitivity
- Difficulty in risk assessment

Brazilian agribusiness reaches historic milestone in global food security

Growth in strategic sectors and market diversification strengthen Brazil's position as a global supplier of food, fiber, and energy

Published in Feb 03, 2025 05:13 PM

demonstrating its resilience despite declining international prices for some major commodities.

Extreme weather events impose billions in losses on agribusiness

After strong El Niño, signs emerge of La Niña formation, which caused droughts in the South

Por Rafael Walendorff, Raphael Salomão, Marcelo Beledeli - São Paulo 14/11/2023 08h45 · Atualizado há um ano

Share: **f** in (S)

razilian agribusiness exports totaled USD 164.4 billion in 2024, marking the second-highest

value on record. The sector accounted for 49 percent of the country's total exports,

Motivation – Crop Insurance Context

IRB(P&D)

- - plots

• With crop information at the field plot level, we can achieve: • Regional market insights Analysis of planting methods Crop rotation analysis • Performance comparison among neighboring

Improved yield predictions

Motivation – Crop Insurance Context

IRB(P&D)

- - plots

• With crop information at the field plot level, we can achieve: • Regional market insights Analysis of planting methods • Crop rotation analysis • Performance comparison among neighboring

Improved yield predictions

Motivation - Theoretical

- Deep Learning (DL) Models
 - State-of-the-art in Earth Observation (EO) image analysis
 - High predictive performance
 - Strong generalization capabilities
 - Require large volumes of training data

Motivation – Theoretical

- Annotating EO images at the pixel level is very costly.
- There is room for research on how to optimize the performance of models trained with limited data.

Challenges

IRB(P&D)

- Few data on field plot geometries in Brazil.
- Limited data on field plots with crop type labels in Brazil.
- Significant differences in field plot patterns and crop types between Brazil and other countries.

s in Brazil. d crop

Challenges

IRB(P&D)

 During periods when crops are most visible (harvest seasons), the sky has significant cloud coverage.

Challenges

- During periods when crops are most visible (harvest seasons), the sky has significant cloud coverage.
- Optical satellites provide rich information but don't work well with clouds.

100%

90%

80%

70%

60%

50%

40%

30%-

20%-

10%-

0%

 \sim

Proposal

IRB(P&D)

• Efficiently segment crop field plots.

JOCC São Paulo 2025

Proposal

- Efficiently segment crop field plots.
- Use radar (SAR) images to obtain information about field plots.

- Efficiently segment crop field plots.
- Use radar (SAR) images to obtain information about field plots.
- Use clustering models to semantically group crops.

Proposal

- Efficiently segment crop field plots.
- Use radar (SAR) images to obtain information about field plots.
- Use clustering models to semantically group crops.
- Classify the entire municipality of Campo Verde with only 23.76% of it labeled.

Dataset

Dataset

Brazil Mato Grosso state

• 520.29 km²

São Paulo 2025

513 labeled field plots

Dataset

IRB(P&D)

Crop	N#	Percentage
Soybean	4288	37,09
Maize	2076	17,96
Cotton	2694	23,30
Sorghum	47	0,41
Beans	10	0,09
NCC*	583	5,04
Pasture	854	7,39
Eucalyptus	284	2,46
Soil	442	3,82
Cerrado	284	2,46
Total	11562	100,00

*NCC refers to Non-Commercial Crops.

2.

Red Train - Green Test

Crop	N#	Percentage	
Soybean	4288	37,09	78.35%
Maize	2076	17,96	
Cotton	2694	23,30	
Sorghum	47	0,41	
Beans	10	0,09	
NCC*	583	5,04	
Pasture	854	7,39	
Eucalyptus	284	2,46	
Soil	442	3,82	
Cerrado	284	2,46	
Total	11562	100,00	

*NCC refers to Non-Commercial Crops.

Red Train - Green Test

Methodology

Automatic Field Plot Mask Generator

- Sentinel-2
- Level 1C
- 10m per pixel
- Composition of 4 months per image
- Cloud Score+
- Patches 1024×1024
- Overlap 256 pixels

Automatic Field Plot Mask Generator

IRB(P&D)

Segment Anything Model 2

- Sentinel-2
- Level 1C
- 10m per pixel
- Composition of 4
 months per image
- Cloud Score+
- Patches 1024×1024
- Overlap 256 pixels

Automatic Field Plot Mask Generator

IRB(P&D)

Segment Anything Model 2

- Sentinel-2
- Level 1C
- 10m per pixel
- Composition of 4
 months per image
- Cloud Score+
- Patches 1024×1024
- Overlap 256 pixels

- Overlap
- Cultivation area
 - MapBiomas

IRB(P&D)

- Sentinel-1
- SAR images
- 10m per pixel
- 2 channels per image
- Concatenates 5 images
- Oct-Feb = 1st harvest
- Mar-Jul = 2nd harvest
- Patches 30×30

‹14›

IRB(P&D)

→ Networks

Masked Siamese

- Sentinel-1
- SAR images
- 10m per pixel
- 2 channels per image
- Concatenates 5 images
- Oct-Feb = 1st harvest
- Mar-Jul = 2nd harvest
- Patches 30×30

<14>

IRB(P&D)

- Sentinel-1
- SAR images
- 10m per pixel
- 2 channels per image
- Concatenates 5 images
- Oct-Feb = 1st harvest
- Mar-Jul = 2nd harvest
- Patches 30×30

- 128x64
- Batch Normalization
- ReLU

‹14›

IRB(P&D)

- Sentinel-1
- SAR images
- 10m per pixel
- 2 channels per image
- Concatenates 5 images
- Oct-Feb = 1st harvest
- Mar-Jul = 2nd harvest
- Patches 30×30

Fine-tuning

Frozen

- Sentinel-1
- SAR images
- 10m per pixel
- 2 channels per image
- Concatenates 5 images
- Oct-Feb = 1st harvest
- Mar-Jul = 2nd harvest
- Patches 30×30

- Sentinel-1
- SAR images
- 10m per pixel
- 2 channels per image
- Concatenates 5 images
- Oct-Feb = 1st harvest
- Mar-Jul = 2nd harvest
- Patches 30×30

Application and Results

Segmentation

Raw Masks

IRB(P&D)

Filtro size e overlap

MapBiomas Filter

2189.73 km² 4014 labeled field plots

Confusion Matrix

Predicted Values

Positive Negative

$Accuracy = acc = \frac{TP + TN}{TP + TN + FP + FN}$

‹17›

Confusion Matrix

Predicted Values

Positive Negative

$${
m acc} = rac{TP+TN}{TP+TN+FP+FN} \hspace{1.5cm} {
m total } {
m acc} = rac{\sum_{i}^{N}TP_{i}}{\sum_{i}^{N}(TP_{i}+\sum_{j}^{N}E_{ij})} \hspace{1.5cm} {
m acc}_{i}$$

Model	Fine-tuning	Frozen
N# de classes	10	10
Total Acc	88.05	87.41
Mean Acc	77.32	69.49
Epochs	7341	40000
Patience	200	200
Learning Rate	5,00E-07	5,00E-07

Tra	ain	Test				
N#	%	N#	%			
2357	38,55	1931	35,44			
1124	18,38	952	17,47			
1481	24,22	1213	22,27			
28	0,46	19	0,35			
7	0,11	3	0,06			
303	4,96	280	5,14			
348	5,69	506	9,29			
130	2,13	154	2,83			
222	3,63	220	4,04			
114	1,86	170	3,12			
6114	100,00	5448	100,00			

São Paulo 2025

		C	onfusi	on Mat	trix - %	6 Accu	racy p	er Cla	SS					C	onfusi	on Mat	rix - %	6 Accu	racy p	er Clas	S	
	Soybear	n Maize	Cotton	Sorghum	Beans	NCC	Pasture	Eucalyptus	s Soil	Cerrado	,		Soybean	Maize	Cotton	Sorghum	Beans	NCC	Pasture	Eucalyptus	Soil	Cerrado
Soybe	an - 94.0%	2.2%	0.1%	0.0%	0.1%	1.5%	1.0%	0.1%	0.9%	0.1%		Soybean	96.4%	1.8%	0.3%	0.0%	0.0%	0.8%	0.4%	0.0%	0.3%	0.0%
Mai	ze - 1.4%	88.9%	5.9%	0.0%	0.0%	2.0%	1.2%	0.2%	0.3%	0.2%		Maize	2.0%	88.8%	6.2%	0.0%	0.0%	1.9%	0.9%	0.1%	0.1%	0.0%
Cott	on - 0.2%	2.4%	96.3%	0.0%	0.0%	0.6%	0.5%	0.0%	0.1%	0.0%		Cotton	0.2%	2.6%	96.3%	0.0%	0.0%	0.2%	0.6%	0.0%	0.0%	0.0%
Sorghu	m - 0 .0%	68.4%	0.0%	31.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		Sorghum	0.0%	52.6%	15.8%	21.1%	0.0%	5.3%	5.3%	0.0%	0.0%	0.0%
Bea	ns - 0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%		Beans	33.3%	0.0%	0.0%	0.0%	66.7%	0.0%	0.0%	0.0%	0.0%	0.0%
Act	cc - 2.9%	0.7%	7.5%	0.0%	0.0%	78.9%	3.6%	0.4%	4.6%	1.4%		ACT ACT	9.3%	1.1%	13.6%	0.0%	0.0%	73.6%	1.4%	0.0%	1.1%	0.0%
Pastu	re - 0.2%	3.4%	2.2%	0.4%	0.0%	1.0%	70.9%	9.1%	2.4%	10.5%		Pasture	- 0.8%	6.7%	4.0%	0.0%	0.0%	0.6%	68.6%	8.3%	0.4%	10.7%
Eucalypt	us - 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.9%	96.1%	0.0%	0.0%		Eucalyptus	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%	4.5%	92.2%	0.0%	2.6%
S	oil - 5.5%	0.0%	3.6%	0.5%	0.0%	24.5%	0.9%	0.9%	64.1%	0.0%		Soil	12.3%	0.9%	5.5%	0.0%	0.0%	18.6%	0.5%	0.9%	61.4%	0.0%
Cerra	do - 0.0%	7.1%	0.0%	0.0%	0.0%	1.2%	27.6%	11.2%	0.6%	52.4%		Cerrado	7.1%	18.2%	0.0%	0.0%	0.0%	0.6%	32.4%	11.8%	0.0%	30.0%
Prediction					1		L	I		I	Predi	iction		I	I							

Fine-Tuning Model

Confusion Motrix 0/ Accuracy nor

IRB(P&D) Cotton Sorghum Beans Pasture Eucalyptus Soil Soybean Maize NCC Cerrado Soybean Soybean -Soybean -Maize -Maize Cotton Cotton · \bigcirc Sorghum Sorghum Beans Beans -Actual Actual NCC -NCC Pasture Pasture · ් Eucalyptus -Eucalyptus Soil Soil (0)Cerrado -Cerrado Prediction

Confusion Matrix - Absolute

•

São Paulo 2025

Fine-Tuning Model

Maize	Cotton	Sorghum	Beans	NCC	Pasture I	Eucalyptus	Soil	Cerrado
35	5	0	0	16	8	0	5	0
845	59	0	0	18	g	1	1	0
32	1168	0	0	3	7	0	0	0
10	3	4	0	1	1	0	0	0
0	0	0	2	0	0	0	0	0
3	38	0	0	206	Ą	0	3	0
34	20	0	0	3	347	42	2	54
0	1	0	0	0	7	142	0	4
2	12	0	0	41	1	2	135	0
31	0	0	0	1	55	20	0	51
1	I	1	Predi	ction	I	I	1	

Confusion Matrix - Absolute

Classification - 10 classes December - Test Dataset

IRB(P&D)

Labeled Data

Fine-Tuning Model

JA.F

Labeled Data

Fine-Tuning Model

Classification - 10 classes December - Generated Masks

IRB(P&D)

Labeled Data

Fine-Tuning Model

IRB(P&D)

May - Generated Masks

Labeled Data

Fine-Tuning Model

Model	Fine-tuning	Frozen
N# de classes	4	4
Total Acc	93.41	92.36
Mean Acc	92.97	91.86
Epochs	5080	40000
Patience	200	200
Learning Rate	5,00E-07	5,00E-07

Cron	Tra	ain	Test			
	N#	%	N#	%		
Soybean	2357	38,55	1931	35,44		
Maize	1124	18,38	952	17,47		
Cotton	1481	24,22	1213	22,27		
Others	1152	18,84	1352	24,82		
Total	6114	100,00	5448	100,00		

São Paulo 2025

Fine-Tuning Model

oybean	Maize	Cotton	Others				
4.92%	2.07%	0.13%	2.85%				
1-68%	88.03%	6.09%	4.20%				
0.25%	2.30%	95.96%	0.99%				
3-03%	3.62%	4.81%	88.54%				
1	Predi	ction	1				

Confusion Matrix - % Accuracy per Class

IRB(P&D)

São Paulo 2025

Fine-Tuning Model

Confusion Matrix - Absolute									
Maize	Cotton	Others							
40	3	55							
838	58	40							
3 4	1164	12							
4 <u>9</u>	65	1197							
Predi	ction	1							
	usion Mat Maize 400 338 34 30 400 Predi	MaizeCotton4003833853853411644003							

Classification - 4 classes December - Test Dataset

Labeled Data

Fine-Tuning Model

Labeled Data

Fine-Tuning Model

Classification - 4 classes December - Generated Masks

Labeled Data

Fine-Tuning Model

IRB(P&D)

May - Generated Masks

Fine-Tuning Model

Conclusion

- We developed a scalable algorithm for field plot segmentation
- We achieved good organization of the latent space
- We successfully addressed the problem caused by cloud coverage during harvest periods
- We reached 93.41% total accuracy in crop classification
- We classified 2189.73 km² with only 520.29 km² of labeled data
- In total, we classified 4014 crop field plots, starting with only 513 labeled field plots

Thank you! Obrigado!

Questions?

Raul Lomonte Figueiredo

raullomonte13@gmail.com

in @raullomontefigueiredo

