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I’m not alone. I have 4 AI assistants working full-time @Solvencii Copilot.

Reach out to us directly at: solvencii.fr !!!
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Theoretical Foundations of LLMs



The chatbot era powered by LLMs

The launch of ChatGPT by OpenAI in November 2022 marked the beginning…
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•Raw data collection
•Preprocessing (remove noise, filter out 
irrelevant or harmful content)

•Standardize formats

Data 
collection 

and cleaning

•Learn a foundation of linguistic 
knowledge in a self-supervised manner

•Massive computational resources and 
large-scale datasets

Pre-training

•Use labeled data to adapt the model to 
specific tasks or domains

•Supervised learning / Reinforcement 
Learning from Human Feedback

Fine-tuning

•Prompt Engineering
•Temperature tuning
•Retrieval-augmented generation (RAG)
•Chain-of-thought reasoning

Post-training



Transformer Architecture 

A deep neural network framework that leverages 
self-attention mechanisms to process sequential 
data without relying on recurrent structures.

It consists of stacked encoder and decoder layers, 
where:
• each encoder layer computes self-attention over 

input tokens to capture contextual relationships, and 
• each decoder layer performs both self-attention and 

encoder-decoder attention to generate outputs. 
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Attention is All You Need
(Vaswani et al., 2017) 



Variations of Transformer Architecture 

• Encoder-only models focus on bidirectional 
context representation, ideal for 
understanding and classification tasks. 

• Decoder-only models, are optimized for 
generative tasks by predicting subsequent 
tokens in a sequence, operating in a 
unidirectional manner.

• Encoder-decoder models combine both 
approaches to handle sequence-to-sequence 
tasks such as translation, summarization, and 
question answering

• Hybrid architectures that integrate elements 
of both self-attention and other neural 
structures have emerged.
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Self-Attention mechanism

• Allows the model to capture the contextual meaning of the word "Actuaries" by attending to 
all other words in the sentence. First, the input words are converted into embeddings, which are 
projected into query 𝑄, key 𝐾, and value 𝑉 vectors. 

• For the word "Actuaries" the model computes a similarity score between its query vector 
𝑄!"#$%&'()  and the key vectors of all other words in the sentence using a dot product: 
𝑠𝑐𝑜𝑟𝑒(𝑄!"#$%&'(), 𝐾'). These scores are passed through the softmax function to calculate 
attention weights (how much focus to give to each word). The final respresentation of 
“Actuaries” is computed as a weighted sum of the value vectors.
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Next Token Prediction

Tokenization breaks text into smaller, more manageable sub-word units 
àreduces the overall vocabulary size 
àallow the model to handle rare or out-of-vocabulary words more effectively
àcaptures morphological nuances that full words might miss. 

For a sequence of tokens 𝑡*, 𝑡+, … , 𝑡,, the probability of a token 𝒕𝒊 given its preceding context 
is modeled as: 

𝑃 𝑡' 𝑡*:'/*) =
exp(𝑠𝑐𝑜𝑟𝑒(𝑡*:'/*, 𝑡'))

∑#0∈2 exp(𝑠𝑐𝑜𝑟𝑒(𝑡*:'/*, 𝑡′))	

where 𝑉 is the vocabulary and 𝑠𝑐𝑜𝑟𝑒(. ) is a function learned by the network. 

Each generated token is appended to the existing sequence and fed back into the model as 
part of the input context to predict the next token. This process is repeated iteratively until 
the model generates a stopping token or reaches the maximum token limit, completing the 
response.
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Next Token Prediction
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Next Token Prediction

10



Next Token Prediction
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Next Token Prediction
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Hallucination

• Hallucination in large language models (LLMs) refers to the phenomenon where the model 
generates factually incorrect, misleading, or nonsensical information that appears plausible.

• This occurs because LLMs are trained to predict the likely next token based on patterns in 
the training data rather than verifying the factual accuracy of the output.

• Hallucination is particularly problematic in professional fields like finance and actuarial science, 
where accuracy and reliability are crucial. 

• The root causes of hallucination include insufficient or biased training data, 
overgeneralization, lack of real-world grounding, and limitations in the model’s ability to 
access or retrieve updated information.
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Hallucination

Hallucination due to poor quality data used for model training
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Hallucination

Hallucination due to limitations in the model’s ability to access or 
retrieve updated information. 
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Temperature
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Adjusting the temperature parameter can boost the quality of 
model outputs depending on the desired behavior. 

• A lower temperature sharpens the probability distribution, 
making the model more confident in its highest probability 
tokens and thus more deterministic in its output. 

• A higher temperature flattens the distribution, leading to more 
diverse and random outputs.



Prompt Engineering
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A common and effective way to reduce model hallucination is through prompt 
engineering. When a user submits a question, the input prompt is combined with a 
system prompt template that includes specific instructions designed to guide the 
model’s behavior and improve response accuracy. 

Returning to the 
example of hallucination 
caused by the model’s 
limited access to 
updated information, 
one straightforward 
approach is to explicitly 
instruct the model not 
to generate 
information it is 
unsure about. 



Augmented Data & Context Window
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If we still want the LLM to provide a meaningful answer despite its limited internal 
knowledge, one approach is to inject augmented data into the system prompt to give 
the LLM a more complete context.

However, this is technically challenging because augmented data often resides in large 
documents, and the context window - which defines the maximum length of the prompt - is 
limited. 



Retrieval-Augmented Generation (RAG) 
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Even though context 
windows are expanding, 
filling the prompt with 
large amounts of raw data 
is often inefficient and 
costly. 

A smarter and more cost-
effective solution is to 
extract only the most 
relevant and useful pieces 
of information and supply 
them to the model as 
context.



Retrieval-Augmented Generation (RAG) 

20

To enable efficient 
searching, text data is 
first converted into 
numerical 
representations called 
embeddings.

A vector database 
stores these 
embeddings in a 
structured format, 
allowing for efficient 
similarity-based 
searches.



Vector Search
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When the user submits 
a query, it is 
embedded into a 
vector using the same 
embedding model.

The system performs a 
vector search to find 
the most similar 
vectors in the database 
using a distance metric 
like cosine similarity 
or Euclidean 
distance. 



Retrieval-Augmented Generation (RAG) 
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The closest matches (most 
semantically similar) are retrieved 
and passed to the LLM as part of 
the prompt context.

More advanced techniques are 
under development and testing to 
enhance RAG's performance and 
accuracy, such as Graph RAG 
and other hybrid retrieval 
approaches.



Example: Prompt-based few-shot CoT (Inference-time technique) à guide the model to think step-by-step 
by showing, in the system prompt, examples of step-by-step reasoning before the question.

By showing structured 
examples, we:
•Teach it how to break 
down the actuarial logic 
(mortality probabilities, 
discounting, summation).
•Implicitly define the 
reasoning style: short, 
precise, and actuarial.
•Encourage step-by-step 
numeric reasoning, 
reducing arithmetic or 
conceptual errors.

Chain-of-Thought (CoT)



Tool Use
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A model compression technique where a smaller, more efficient model (the student) is 
trained to replicate the performance of a larger, more complex model (the teacher).

Train the smaller model 
to match the teacher’s 
output probabilities, 
hidden state 
representations, or 
attention patterns.
à reduce the 
computational and 
memory requirements of 
LLMs while preserving 
most of the teacher 
model’s accuracy and 
reasoning capabilities. 

Distillation



AI Agents
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System that can perceive its environment, process information, and take actions to achieve specific 
goals, often with a degree of autonomy and adaptability.
An AI agent typically consists of the following core components:
• Perception – The agent receives input from its environment, which could be user prompts, 

external data feeds, or system-generated signals.
• Memory/State – The agent maintains a state that tracks the current context and past interactions 

to inform future decisions.
• Reasoning/Decision-Making – The agent processes the input using LLMs or other models to 

evaluate possible actions and determine the best course of action.
• Action/Execution – The agent executes the chosen action, which could involve generating text, 

retrieving information, running calculations, or triggering an external process.
• Feedback Loop – The agent evaluates the outcome of its action and adjusts its future decisions 

based on the results, creating a learning loop.



Building AI Agents
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• Define the Objective and Scope
o Identify the specific problem the agent should solve (e.g., 

interpreting ALM results, suggesting asset allocation strategies, 
etc.).

o Set boundaries for the agent’s behavior and capabilities (e.g., 
which data sources it can access, what decisions it can make).

• Select the Core Model
o Choose an appropriate LLM (e.g., GPT, LLaMA) or fine-tune 

an existing model to suit the task.
o Pre-train or fine-tune the model on domain-specific data (e.g., 

financial models, market data).

• Build the Reasoning Engine
o Implement chain-of-thought reasoning to allow the agent to 

break down complex problems.
o Use tool-calling and function-calling to allow the agent to 

interact with external systems (e.g., financial models, APIs).
o Employ planning algorithms (e.g., tree search, reinforcement 

learning) to enable multi-step decision-making.

• Integrate a Retrieval System
o Implement RAG (Retrieval-Augmented Generation) 

to allow the agent to access real-time market data, 
financial reports, and other external sources.

o Fine-tune the retriever to optimize relevance and 
minimize noise.

• Create a Feedback and Learning Loop
o Apply Reinforcement Learning from Human 

Feedback (RLHF) to refine outputs based on user 
evaluations.

o Monitor the agent’s performance and retrain 
periodically to adapt to changing market conditions or 
user needs.

• Build an Interface
o Develop a user-friendly interface (e.g., chatbot or web 

app) to allow users to interact with the agent.
o Enable multi-turn conversation handling to maintain 

context across user interactions.



An effective AI Agent
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a dynamic, goal-
oriented system 

that can 
automate and 

optimize 
complex 
processes

external 
tool 

interaction

LLM 
reasoning

adaptive 
learning



Asset and Liability Management

ALM modeling & ALM software



Asset and Liability Management (ALM)
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A core discipline 
within actuarial 
science that focuses 
on managing the 
interaction between 
an institution's assets 
and liabilities to 
optimize financial 
performance, 
minimize risk, and 
ensure long-term 
solvency. 



ALM Model Structure
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Connects asset and liability 
models to simulate how 
assets and liabilities evolve 
together over time under 
different market scenarios.
• Applies dynamic asset 

allocation rules.
• Models reinvestment 

and disinvestment 
strategies.

• Simulates the impact
•      of market shocks and   
•      economic cycles
• Models crediting and 

profit-sharing strategies 

Liability model 

Interaction 
engine 

Asset model 

Models the behavior of financial markets, asset returns, interest 
rates, and credit spreads.
Uses stochastic models to simulate market dynamics.
Incorporates historical correlations between asset classes 

Projects future cash outflows based on 
policyholder behavior, mortality rates, 
claims experience, and regulatory 
requirements.
• Uses actuarial models (e.g., survival 

models, annuity factors) to simulate 
liability cash flows.

• Accounts for optionality in 
insurance contracts (e.g., 
policyholder lapses, surrender 
options).



Challenges in traditional ALM software
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• Data Preparation and Input Complexity: ALM models require the ingestion of diverse 
datasets—from market indices and interest rates to demographic statistics and policy details. 
Standardizing these data sources into a model-ready format is nontrivial and often requires 
manual intervention, increasing the potential for errors.

• Algorithmic Sophistication in ALM: ALM algorithms involve complex processes such as asset 
allocation, investment strategies, crediting methodologies, and profit-sharing mechanisms. Each 
component demands precise calibration and robust mathematical modeling, which can 
overwhelm traditional computational systems, especially during extensive scenario simulations.

• Output Interpretation and Decision-Making: The output of traditional ALM models is often a 
vast array of scenarios and risk assessments. Interpreting these outputs requires deep domain 
expertise and can be time-consuming, reducing the effectiveness of decision-making under tight 
time constraints.



Integrating AI Agents into ALM systems
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User Experience: 
• act as intelligent assistants, helping users navigate 

the different components of ALM software and 
interpret documentation. 

• answer user queries, explain model outputs, and 
suggest improvements by leveraging domain 
knowledge from both the internal ALM model and 
external financial and regulatory sources available 
on the internet. 



Integrating AI Agents into ALM systems
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Automating Data Ingestion: automate the process of collecting, cleaning, and standardizing data from diverse sources, 
including financial market data, actuarial reports, economic forecasts, and internal balance sheets, and updating model 
inputs in real time. à Reduce manual errors and ensures that the data is structured in a format compatible with ALM 
models ; Enable real-time adjustments to ALM strategies, improving the responsiveness of the model to changing market 
conditions.



Integrating AI Agents into ALM systems
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Algorithmic Enhancement: assist in fine-tuning ALM model parameters by employing optimization algorithms and 
machine learning techniques. (eg. reinforcement learning can be used to identify optimal asset allocation, investment 
strategies, systematic gain & loss realization, …)



Integrating AI Agents into ALM systems
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Output Synthesis: distill insights from complex simulation outputs.
• Identify patterns in large datasets, 
• Generate natural language summaries of scenario outcomes, and provide actionable recommendations. 



Case Study

Solvencii Copilot in Solvencii Lab



Solvencii Lab & Solvencii Copilot
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Solvencii Lab is a SaaS platform for ALM modeling that integrates multiple modules for 
data processing, simulation, and analysis within a unified environment. Built with 
modern web technologies, Solvencii Lab offers a flexible and scalable architecture, making 
it easier to leverage state-of-the-art AI models and cutting-edge software techniques 
compared to traditional ALM software.

Solvencii Copilot is an advanced AI assistant embedded within Solvencii Lab, designed to 
extend the capabilities of traditional ALM software by integrating deep financial and 
actuarial expertise with state-of-the-art language models and tool orchestration. More than 
just a chatbot, Solvencii Copilot functions as a strategic co-pilot for actuaries, providing 
insights, automation, and enhanced decision-making support.

Both Solvencii Lab and Solvencii Copilot are openly and freely accessible at solvencii.fr. 
Users can explore the platform’s full range of ALM modeling functionalities and 
experience the capabilities of Solvencii Copilot directly. 

https://www.solvencii.fr/


Key capabilities of Solvencii Copilot
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Illustration
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Solvencii Copilot is still evolving 
alongside the rapid 
advancements in LLMs and AI 
agent frameworks.
Its capabilities are expected to 
grow as AI models become more 
powerful, context windows 
expand, and multimodal 
capabilities improve. 

Example scenario illustrating 
how Solvencii Copilot could 
assist a user within Solvencii 
Lab:



Multi-agent architecture
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• Model diversification: By leveraging different LLM models available on the market, 
Solvencii Copilot can match each task with the most suitable model. Even if we stick with a 
single model, we can assign different roles to various AI assistants using prompt templates. 

• Dynamic Orchestration: Solvencii Copilot can dynamically decide which model to activate 
for a given task, optimizing for both performance and cost. For complex calculations or 
scenario analysis, a high-performing model may be required. For simpler tasks like data 
formatting or interpretation, a smaller, more efficient model may be sufficient.

• Collaborative Problem Solving: In some cases, instead of relying on a single large model, 
Solvencii Copilot can enable collaboration between mid-sized models. This mirrors the 
real-life scenario where a team of actuaries might work together—each contributing 
specialized knowledge to solve a complex ALM task.

• Redundancy and Robustness: A multi-agent setup also enhances system reliability. If one 
model underperforms or fails to deliver a satisfactory result, another model can take over or 
refine the output, ensuring consistent and accurate responses 



Behind the scenes

The making of Solvencii Copilot



Model & Framework
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Multi-agent architecture
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Prompt Template, History & Memory
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RAG
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Thank you!

duc-hien.vu@solvencii.com
contact@solvencii.com

Solvencii.com | Solvencii.fr

https://www.linkedin.com/company/solvencii/
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