

Asian Actuarial Conference 2025

Duc Hien VU

SOLVENCII | Founder & CEO

Agentic AI in Asset and Liability
Management (ALM)

I’m not alone. I have 4 AI assistants working full-time @Solvencii Copilot.

Reach out to us directly at: solvencii.fr !!!
2

Qualified
Actuary

(Institut des
Actuaires)

AI enthusiastSelf-taught
developer

Me building Solvencii

About Me

Theoretical Foundations of LLMs

The chatbot era powered by LLMs

The launch of ChatGPT by OpenAI in November 2022 marked the beginning…

4

•Raw data collection
•Preprocessing (remove noise, filter out
irrelevant or harmful content)

•Standardize formats

Data
collection

and cleaning

•Learn a foundation of linguistic
knowledge in a self-supervised manner

•Massive computational resources and
large-scale datasets

Pre-training

•Use labeled data to adapt the model to
specific tasks or domains

•Supervised learning / Reinforcement
Learning from Human Feedback

Fine-tuning

•Prompt Engineering
•Temperature tuning
•Retrieval-augmented generation (RAG)
•Chain-of-thought reasoning

Post-training

Transformer Architecture

A deep neural network framework that leverages
self-attention mechanisms to process sequential
data without relying on recurrent structures.

It consists of stacked encoder and decoder layers,
where:
• each encoder layer computes self-attention over

input tokens to capture contextual relationships, and
• each decoder layer performs both self-attention and

encoder-decoder attention to generate outputs.

5

Attention is All You Need
(Vaswani et al., 2017)

Variations of Transformer Architecture

• Encoder-only models focus on bidirectional
context representation, ideal for
understanding and classification tasks.

• Decoder-only models, are optimized for
generative tasks by predicting subsequent
tokens in a sequence, operating in a
unidirectional manner.

• Encoder-decoder models combine both
approaches to handle sequence-to-sequence
tasks such as translation, summarization, and
question answering

• Hybrid architectures that integrate elements
of both self-attention and other neural
structures have emerged.

6

Self-Attention mechanism

• Allows the model to capture the contextual meaning of the word "Actuaries" by attending to
all other words in the sentence. First, the input words are converted into embeddings, which are
projected into query 𝑄, key 𝐾, and value 𝑉 vectors.

• For the word "Actuaries" the model computes a similarity score between its query vector
𝑄!"#$%&'() and the key vectors of all other words in the sentence using a dot product:
𝑠𝑐𝑜𝑟𝑒(𝑄!"#$%&'(), 𝐾'). These scores are passed through the softmax function to calculate
attention weights (how much focus to give to each word). The final respresentation of
“Actuaries” is computed as a weighted sum of the value vectors.

7

Next Token Prediction

Tokenization breaks text into smaller, more manageable sub-word units
àreduces the overall vocabulary size
àallow the model to handle rare or out-of-vocabulary words more effectively
àcaptures morphological nuances that full words might miss.

For a sequence of tokens 𝑡*, 𝑡+, … , 𝑡,, the probability of a token 𝒕𝒊 given its preceding context
is modeled as:

𝑃 𝑡' 𝑡*:'/*) =
exp(𝑠𝑐𝑜𝑟𝑒(𝑡*:'/*, 𝑡'))

∑#0∈2 exp(𝑠𝑐𝑜𝑟𝑒(𝑡*:'/*, 𝑡′))	

where 𝑉 is the vocabulary and 𝑠𝑐𝑜𝑟𝑒(.) is a function learned by the network.

Each generated token is appended to the existing sequence and fed back into the model as
part of the input context to predict the next token. This process is repeated iteratively until
the model generates a stopping token or reaches the maximum token limit, completing the
response.

8

Next Token Prediction

9

Next Token Prediction

10

Next Token Prediction

11

Next Token Prediction

12

Hallucination

• Hallucination in large language models (LLMs) refers to the phenomenon where the model
generates factually incorrect, misleading, or nonsensical information that appears plausible.

• This occurs because LLMs are trained to predict the likely next token based on patterns in
the training data rather than verifying the factual accuracy of the output.

• Hallucination is particularly problematic in professional fields like finance and actuarial science,
where accuracy and reliability are crucial.

• The root causes of hallucination include insufficient or biased training data,
overgeneralization, lack of real-world grounding, and limitations in the model’s ability to
access or retrieve updated information.

13

Hallucination

Hallucination due to poor quality data used for model training

14

Hallucination

Hallucination due to limitations in the model’s ability to access or
retrieve updated information.

15

Temperature

16

Adjusting the temperature parameter can boost the quality of
model outputs depending on the desired behavior.

• A lower temperature sharpens the probability distribution,
making the model more confident in its highest probability
tokens and thus more deterministic in its output.

• A higher temperature flattens the distribution, leading to more
diverse and random outputs.

Prompt Engineering

17

A common and effective way to reduce model hallucination is through prompt
engineering. When a user submits a question, the input prompt is combined with a
system prompt template that includes specific instructions designed to guide the
model’s behavior and improve response accuracy.

Returning to the
example of hallucination
caused by the model’s
limited access to
updated information,
one straightforward
approach is to explicitly
instruct the model not
to generate
information it is
unsure about.

Augmented Data & Context Window

18

If we still want the LLM to provide a meaningful answer despite its limited internal
knowledge, one approach is to inject augmented data into the system prompt to give
the LLM a more complete context.

However, this is technically challenging because augmented data often resides in large
documents, and the context window - which defines the maximum length of the prompt - is
limited.

Retrieval-Augmented Generation (RAG)

19

Even though context
windows are expanding,
filling the prompt with
large amounts of raw data
is often inefficient and
costly.

A smarter and more cost-
effective solution is to
extract only the most
relevant and useful pieces
of information and supply
them to the model as
context.

Retrieval-Augmented Generation (RAG)

20

To enable efficient
searching, text data is
first converted into
numerical
representations called
embeddings.

A vector database
stores these
embeddings in a
structured format,
allowing for efficient
similarity-based
searches.

Vector Search

21

When the user submits
a query, it is
embedded into a
vector using the same
embedding model.

The system performs a
vector search to find
the most similar
vectors in the database
using a distance metric
like cosine similarity
or Euclidean
distance.

Retrieval-Augmented Generation (RAG)

22

The closest matches (most
semantically similar) are retrieved
and passed to the LLM as part of
the prompt context.

More advanced techniques are
under development and testing to
enhance RAG's performance and
accuracy, such as Graph RAG
and other hybrid retrieval
approaches.

Example: Prompt-based few-shot CoT (Inference-time technique) à guide the model to think step-by-step
by showing, in the system prompt, examples of step-by-step reasoning before the question.

By showing structured
examples, we:
•Teach it how to break
down the actuarial logic
(mortality probabilities,
discounting, summation).
•Implicitly define the
reasoning style: short,
precise, and actuarial.
•Encourage step-by-step
numeric reasoning,
reducing arithmetic or
conceptual errors.

Chain-of-Thought (CoT)

Tool Use

25

A model compression technique where a smaller, more efficient model (the student) is
trained to replicate the performance of a larger, more complex model (the teacher).

Train the smaller model
to match the teacher’s
output probabilities,
hidden state
representations, or
attention patterns.
à reduce the
computational and
memory requirements of
LLMs while preserving
most of the teacher
model’s accuracy and
reasoning capabilities.

Distillation

AI Agents

26

System that can perceive its environment, process information, and take actions to achieve specific
goals, often with a degree of autonomy and adaptability.
An AI agent typically consists of the following core components:
• Perception – The agent receives input from its environment, which could be user prompts,

external data feeds, or system-generated signals.
• Memory/State – The agent maintains a state that tracks the current context and past interactions

to inform future decisions.
• Reasoning/Decision-Making – The agent processes the input using LLMs or other models to

evaluate possible actions and determine the best course of action.
• Action/Execution – The agent executes the chosen action, which could involve generating text,

retrieving information, running calculations, or triggering an external process.
• Feedback Loop – The agent evaluates the outcome of its action and adjusts its future decisions

based on the results, creating a learning loop.

Building AI Agents

27

• Define the Objective and Scope
o Identify the specific problem the agent should solve (e.g.,

interpreting ALM results, suggesting asset allocation strategies,
etc.).

o Set boundaries for the agent’s behavior and capabilities (e.g.,
which data sources it can access, what decisions it can make).

• Select the Core Model
o Choose an appropriate LLM (e.g., GPT, LLaMA) or fine-tune

an existing model to suit the task.
o Pre-train or fine-tune the model on domain-specific data (e.g.,

financial models, market data).

• Build the Reasoning Engine
o Implement chain-of-thought reasoning to allow the agent to

break down complex problems.
o Use tool-calling and function-calling to allow the agent to

interact with external systems (e.g., financial models, APIs).
o Employ planning algorithms (e.g., tree search, reinforcement

learning) to enable multi-step decision-making.

• Integrate a Retrieval System
o Implement RAG (Retrieval-Augmented Generation)

to allow the agent to access real-time market data,
financial reports, and other external sources.

o Fine-tune the retriever to optimize relevance and
minimize noise.

• Create a Feedback and Learning Loop
o Apply Reinforcement Learning from Human

Feedback (RLHF) to refine outputs based on user
evaluations.

o Monitor the agent’s performance and retrain
periodically to adapt to changing market conditions or
user needs.

• Build an Interface
o Develop a user-friendly interface (e.g., chatbot or web

app) to allow users to interact with the agent.
o Enable multi-turn conversation handling to maintain

context across user interactions.

An effective AI Agent

28

a dynamic, goal-
oriented system

that can
automate and

optimize
complex
processes

external
tool

interaction

LLM
reasoning

adaptive
learning

Asset and Liability Management

ALM modeling & ALM software

Asset and Liability Management (ALM)

30

A core discipline
within actuarial
science that focuses
on managing the
interaction between
an institution's assets
and liabilities to
optimize financial
performance,
minimize risk, and
ensure long-term
solvency.

ALM Model Structure

31

Connects asset and liability
models to simulate how
assets and liabilities evolve
together over time under
different market scenarios.
• Applies dynamic asset

allocation rules.
• Models reinvestment

and disinvestment
strategies.

• Simulates the impact
• of market shocks and
• economic cycles
• Models crediting and

profit-sharing strategies

Liability model

Interaction
engine

Asset model

Models the behavior of financial markets, asset returns, interest
rates, and credit spreads.
Uses stochastic models to simulate market dynamics.
Incorporates historical correlations between asset classes

Projects future cash outflows based on
policyholder behavior, mortality rates,
claims experience, and regulatory
requirements.
• Uses actuarial models (e.g., survival

models, annuity factors) to simulate
liability cash flows.

• Accounts for optionality in
insurance contracts (e.g.,
policyholder lapses, surrender
options).

Challenges in traditional ALM software

32

• Data Preparation and Input Complexity: ALM models require the ingestion of diverse
datasets—from market indices and interest rates to demographic statistics and policy details.
Standardizing these data sources into a model-ready format is nontrivial and often requires
manual intervention, increasing the potential for errors.

• Algorithmic Sophistication in ALM: ALM algorithms involve complex processes such as asset
allocation, investment strategies, crediting methodologies, and profit-sharing mechanisms. Each
component demands precise calibration and robust mathematical modeling, which can
overwhelm traditional computational systems, especially during extensive scenario simulations.

• Output Interpretation and Decision-Making: The output of traditional ALM models is often a
vast array of scenarios and risk assessments. Interpreting these outputs requires deep domain
expertise and can be time-consuming, reducing the effectiveness of decision-making under tight
time constraints.

Integrating AI Agents into ALM systems

33

User Experience:
• act as intelligent assistants, helping users navigate

the different components of ALM software and
interpret documentation.

• answer user queries, explain model outputs, and
suggest improvements by leveraging domain
knowledge from both the internal ALM model and
external financial and regulatory sources available
on the internet.

Integrating AI Agents into ALM systems

34

Automating Data Ingestion: automate the process of collecting, cleaning, and standardizing data from diverse sources,
including financial market data, actuarial reports, economic forecasts, and internal balance sheets, and updating model
inputs in real time. à Reduce manual errors and ensures that the data is structured in a format compatible with ALM
models ; Enable real-time adjustments to ALM strategies, improving the responsiveness of the model to changing market
conditions.

Integrating AI Agents into ALM systems

35

Algorithmic Enhancement: assist in fine-tuning ALM model parameters by employing optimization algorithms and
machine learning techniques. (eg. reinforcement learning can be used to identify optimal asset allocation, investment
strategies, systematic gain & loss realization, …)

Integrating AI Agents into ALM systems

36

Output Synthesis: distill insights from complex simulation outputs.
• Identify patterns in large datasets,
• Generate natural language summaries of scenario outcomes, and provide actionable recommendations.

Case Study

Solvencii Copilot in Solvencii Lab

Solvencii Lab & Solvencii Copilot

38

Solvencii Lab is a SaaS platform for ALM modeling that integrates multiple modules for
data processing, simulation, and analysis within a unified environment. Built with
modern web technologies, Solvencii Lab offers a flexible and scalable architecture, making
it easier to leverage state-of-the-art AI models and cutting-edge software techniques
compared to traditional ALM software.

Solvencii Copilot is an advanced AI assistant embedded within Solvencii Lab, designed to
extend the capabilities of traditional ALM software by integrating deep financial and
actuarial expertise with state-of-the-art language models and tool orchestration. More than
just a chatbot, Solvencii Copilot functions as a strategic co-pilot for actuaries, providing
insights, automation, and enhanced decision-making support.

Both Solvencii Lab and Solvencii Copilot are openly and freely accessible at solvencii.fr.
Users can explore the platform’s full range of ALM modeling functionalities and
experience the capabilities of Solvencii Copilot directly.

https://www.solvencii.fr/

Key capabilities of Solvencii Copilot

39

Illustration

40

Solvencii Copilot is still evolving
alongside the rapid
advancements in LLMs and AI
agent frameworks.
Its capabilities are expected to
grow as AI models become more
powerful, context windows
expand, and multimodal
capabilities improve.

Example scenario illustrating
how Solvencii Copilot could
assist a user within Solvencii
Lab:

Multi-agent architecture

41

• Model diversification: By leveraging different LLM models available on the market,
Solvencii Copilot can match each task with the most suitable model. Even if we stick with a
single model, we can assign different roles to various AI assistants using prompt templates.

• Dynamic Orchestration: Solvencii Copilot can dynamically decide which model to activate
for a given task, optimizing for both performance and cost. For complex calculations or
scenario analysis, a high-performing model may be required. For simpler tasks like data
formatting or interpretation, a smaller, more efficient model may be sufficient.

• Collaborative Problem Solving: In some cases, instead of relying on a single large model,
Solvencii Copilot can enable collaboration between mid-sized models. This mirrors the
real-life scenario where a team of actuaries might work together—each contributing
specialized knowledge to solve a complex ALM task.

• Redundancy and Robustness: A multi-agent setup also enhances system reliability. If one
model underperforms or fails to deliver a satisfactory result, another model can take over or
refine the output, ensuring consistent and accurate responses

Behind the scenes

The making of Solvencii Copilot

Model & Framework

43

Multi-agent architecture

44

Prompt Template, History & Memory

45

RAG

46

Thank you!

duc-hien.vu@solvencii.com
contact@solvencii.com

Solvencii.com | Solvencii.fr

https://www.linkedin.com/company/solvencii/

47

mailto:duc-hien.vu@solvencii.com
mailto:contact@solvencii.com
https://www.linkedin.com/company/solvencii/

	r2-3-100
	Pres_AAC2025_DucHienVU_final

