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Background

This work has grown out of a practical problem. | was asked by Swedbank’s two life

insurance companies how to model surrender risk for the purpose of risk adjustment in
IFRS17.

Proposed model: Normally distributed increments of surrender rates.
Well-developed theory (convex ordering of random variables) that could be applied.

Key message: A reasonable risk adjustment can be calculated by approximations,
avoiding simulations.
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Risk adjustment in IFRS 17

Paragraph 37: "An entity shall adjust the estimate of the present value of the future cash
flows to reflect the compensation that the entity requires for bearing the uncertainty about
the amount and timing of the cash flows that arises from non-financial risk.”

Paragraph 119: "An entity shall disclose the confidence level used to determine the risk
adjustment for non-financial risk. If the entity uses a technique other than the confidence
level technique for determining the risk adjustment for non-financial risk, it shall disclose
the technique used and the confidence level corresponding to the results of that
technique.”

The method for risk adjustment is not specified but there are five requirements it must
fulfil.
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Cash flows and remain rate

Portfolio of term life contracts

Discounted net cash flows a;, t = 1,2, ..., T, given a surrender rate of zero. The {a;} are
calculated based on actuarial assumptions, including other risks than surrenders.
The present value of future cash flows ("PVFCF”) from the portfolio is

T

S

t=1

We will model remain rate, i.e. 1 minus the surrender rate; let its best estimate be R at
time 0,0 < R < 1.
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Cash flows and remain rate, cont.

Process {r;}, meaning that each year ¢, a proportion of contracts equal to r, remains in
the portfolio. We set o = R.

We get a modified cash flow at time ¢:

t
bt = Qg H Trs.
s=1

The total PVFCF for the portfolio becomes

T
S == Z bt.
t=1
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A stochastic model for surrenders
Assume that ,

Ty =116 /2+"Xt,
where X; are i.i.d. standard normal, ¢ > 0, and o = R.
Obvious that E[ry|r¢—1] = -1, i.€. 7 is @ martingale.

t>1,
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Real example, four portfolios (transformed data)
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Fig.1

Shapiro-Wilk test on {logr; — logr;—1} shows that the hypothesis of normality is not
rejected for any of the time series.
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Example of cash flow projections (a; = 1 for all ¢, R = 0.96)

Cash flow
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Fig. 3

With & = 0 we get the deterministic cash flows 0.96 (thick red).
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A stochastic model for surrender, cont.

We have, using the stochastic iteration,

r _Re—502/2+U(X1+...+XS)
s = .

Hence

t t
by = a4 H rs = ay H Re—50" /2o (Xit...4Xs)

s=1 s=1 (1 )
_ athe—t(1+t)02/4+a(tX1 +(t—1)Xo+...+X¢)
= a Rt e—t(1+t)02 /4+0Zy
t
where Z; = Z(t — 1+ 1)X;. Note that each b, is lognormal and that {b;} are dependent.

i=1
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Quantile of PFVCF for individual future years
Each Z; is a normally distributed variable with mean 0, and their covariance matrix C' is:

t
Cop:=Cov[Zs, Zi) =Y (t—i+1)(s—i+1)=

=1

tH(t+1)(3s —t + 1)
: :

where t < s. In particular, the variance of Z; is

tt+1)(2t+1
VaI'[Zt] = Ct,t = ( )é )

Hence the p-quantile of b; equals
tt+1)(2t+1
Qplbi] = a k' exp (_t(l +t)o? /4 + azp\/ = )é : )> ;

where z, = ®~!(p). This is a stressed PVFCF for time ¢ and a low quantile (e.g. p = 0.2),
and a typical risk adjustment is the difference between the deterministic cash flow (o = 0)
and this quantile.
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Risk adjustment for the whole portfolio

We want to make the risk adjustment for the portfolio as a whole, so how do we
aggregate?

“Sum of quantiles (of cash flows)”:
T

> Qulbi]-

t=1
This is easy, conservative, and basically assumes all the cash flows perfectly dependent.

“Quantile of sums (of cash flows)”:

T
o 30,
t=1
This is more correct, but requires simulation or approximation.
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Convex ordering of random variables

A random variable X is said to precede the random variable Y in the convex order sense,
notation X <., Y, if

E[v(X)] < Efv(Y)]
for all convex functions wv.

This is only possible if E[X] = E[Y]. Also E[X] <., X for all X (by Jensen’s inequality).

Intuitively, the tails of Y go further out from the centre than the tails of X.
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Comonotonicity

Let U be uniform. The random vector Y = (Y1, ...,Y,) is said to be comonotonic if there
exist non-decreasing functions g1, . . ., g, defined on (0, 1) such that

Y L {(U),....9.(U)}.

The comonotonic counterpart of Y is defined as the random vector
(F;ll(U), ey F;:(U)); this random vector has the same marginal distributions as Y.

Note: For comonotonic random variables, quantiles are additive.
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Convex bounds for sums of random variables

Theorem: Let (X7, ..., X,,) be any random vector, U uniform on (0,1), and A any random
variable. Then

Zn:E[Xi\A] <ex anXi <ex an Fi (V).

=1 =1 =1

The upper bound is the comonotonic counterpart of the sum in the middle. .

The lower bound is very useful, in particular when A resembles S := Z X; in some way.
Caution: Convex ordering does not always preserve quantiles.
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Convex bounds for sums of lognormal variables (Kaas et al.)

Let

T
S:Zatexp{Yl—i—...—i—Y}},
t=1

where (Y7,...,Yr) has a multinormal distribution, and «; > 0. Define
Yt)=Y1+...+ Y,

oy = v/ Var[Y (t)],

T
A= Zﬁsyts
s=1

Finally let p; be the correlation between A and Y (¢).
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Convex bounds for sums of lognormal variables, cont.

Let
e YA (U ll— 2\ 2
Z ot exp {Y () }A] = Zatexp (0] + poy @ (U) + 5 (1= pt)oy g ¢
and
T
ZFatexp{Y t)} Zatexp{E[Y +O-Y d- 1(U)}’
t=1

(the sum of quantiles). Then

Sl Scx S Sc:c Su
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Approximations of quantiles of the total PVFCF

PVFCF
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Fig. 6
T =60, a; = 1 forall t, r = 0.96, c = 0.01. The orange line is S, the blue line is S;, and
the green line is S.
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Graph of relative risk adjustment as a function of o
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One may show that the method fulfils the five properties defined in IFRS17.
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Thank You!

magnus.carlehed@swedbank.com

Magnus Carlehed, Swedbank AB Risk adjustment (IFRS 17) for Surrender risk ECA, Rome, June 7, 2024 21/21



