

A COMPARISON OF PREDICTION METHODS FOR LAPSES AND SURRENDERS, USING INSURANCE AND ANNUITY DATA

This presentation has been prepared for the 2023 Caribbean Actuarial Association (CAA) Conference.

The CAA wishes it to be understood that opinions put forward herein are not necessarily those of the CAA and the CAA takes no responsibility for those opinions.

SHAPI

by Joseph Laquis

Introduction

<u>Goal</u>

- Attain an understanding of policy lapses and surrenders
- Significant financial impacts and benefits of predicting lapses and surrenders
- Process involved in the collection and analysis of the data
- Examination of the predictive methods for optimal results

Definition

<u>Lapses</u>

- A lapse happens when policyholders cease premium payments, resulting in the termination of the policy.
- **Process:** It refers to the discontinuation of a policy initiated by the policyholder, either through action or inaction, beyond the grace period.

<u>Surrenders</u>

- A surrender occurs when policyholders terminate their contract prematurely, and this can happen at any point.
- **Process:** Policy surrender involves the policyholder deciding to end their insurance plan. During a surrender, the policyholder receives any accumulated cash value from the policy.

Why Predict Lapses and Surrenders?

- Predicting lapses and surrenders enables insurers to reduce risks, lower costs, and retain policyholders.
- Proactive measures can lead to financial stability, reduced losses, and optimized investment strategies.
- Predicting these events helps insurance companies build stronger relationships with their clients, fostering trust and longterm loyalty.

Financial Impacts of Lapses

- Lapses result in lost premium income, negatively impacting an insurer's profitability.
- Predicting and managing lapses is vital for maintaining financial stability and ensuring policyholder satisfaction.
- Insurance companies may also face policy reissuance costs when lapses occur.

Advantages of Predicting Lapses

- Predicting lapses allows insurers to implement proactive retention strategies, reduce financial losses, and maintain policyholder satisfaction
- It leads to improved profitability and long-term financial stability.
- It also aids in avoiding reissuance costs and policy reinstatement efforts.

Financial Impacts of Surrenders

- Surrenders lead to the loss of policy reserves and can disrupt an insurer's investment strategy.
- Predicting surrenders is crucial for maintaining financial stability and ensuring a sustainable business model.
- Insurance companies may also face early surrender charges and administrative costs when surrenders happen.

Advantages of Predicting Surrenders

- Predicting surrenders helps insurers retain policyholders, maintain a stable customer base, and optimize investment strategies.
- It contributes to financial stability, enhanced customer relationships, and long-term growth.
- Predicting surrenders can also save insurers from incurring early surrender charges and administrative expenses.

Methodology and Data Analysis Overview

Data and Variables

- This study represents the first empirical investigation of Trinidad and Tobago's life insurance market, utilizing genuine policyholder data from a local insurance company spanning a five-year period (2015 to 2019).
- The study encompasses the following product types:

Traditional Life (Whole of Life, Term Life and Endowment)
 Deferred Type of Accumulation Annuity
 Universal-Life

Continued...

- The analysis is based on a dataset containing policy-related variables that directly influence policyholder behavior.
- In a binary grouping, a confusion matrix displays the expected outcomes, allowing a closer examination of the results, and is as follows:

		Predicted Group	
		+	-
Actual Group	+	True Positive (TP)	False Negative (FN)
	-	False Positive (FP)	True Negative (TN)

Continued...

• Key performance metrics used were:

Accuracy: How often are our predictions correct

- **Precision**: Gauges exactness in our positive predictions
- Recall: Captures the effectiveness of catching all actual positive instances

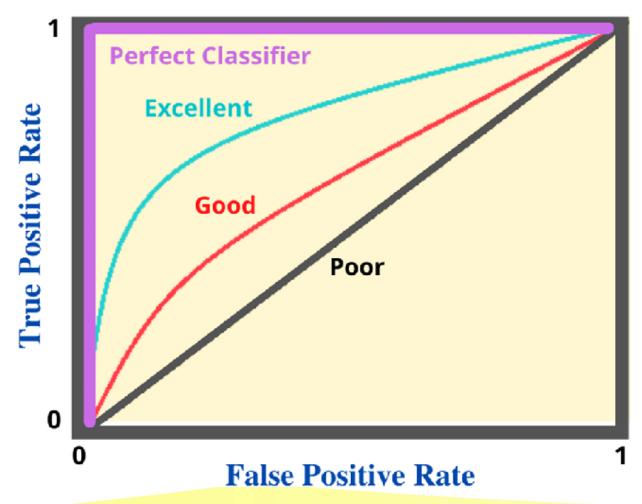
- **F1 Score**: Strikes a balance between Precision and Recall
- AUC (Area under the ROC curve): Evaluates the model's ability to distinguish between two outcomes

Cohen's Kappa Statistic: Measures how well predictions match actual values

RMSE (Root Mean Square Error): How far, on average, are we from the target?

SHARE & SUSTAINABLE

Receiver Operating Characteristic Curve



Predictive Analytics

Predictive analytics uses advanced data analysis for forecasting lapses and surrenders, by analyzing policyholder behavior and various data sources to create accurate predictive methods

Predictive Methods can be categorized as follows:

Supervised Method:

Explores the relationship between independent variables (X)

and a dependent variable (Y).

Semi-Supervised Method:

- Particularly useful for managing large datasets.
 Doesn't necessitate names or labels for every element in the data.

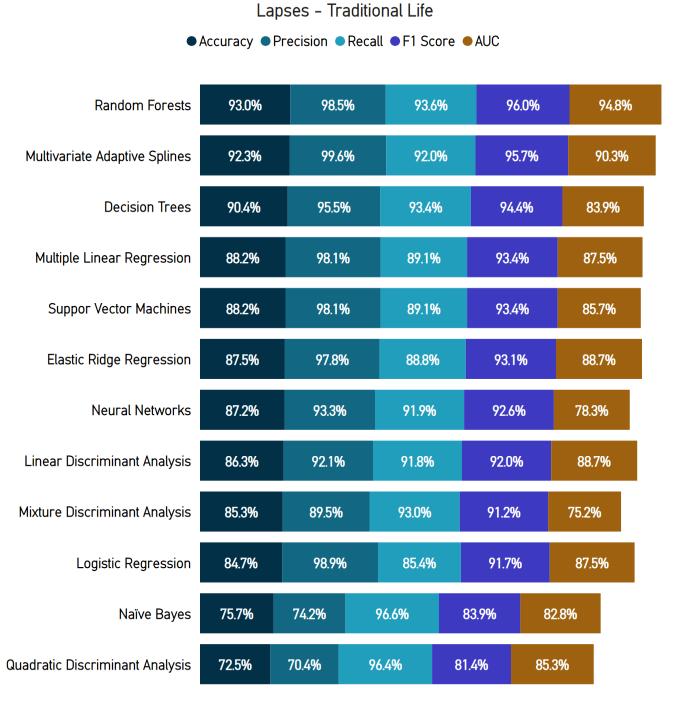
Unsupervised Method:

- 1.Identifies patterns within datasets without prior knowledge or labels.
 - 2. Reveals underlying structures or relationships within the data.

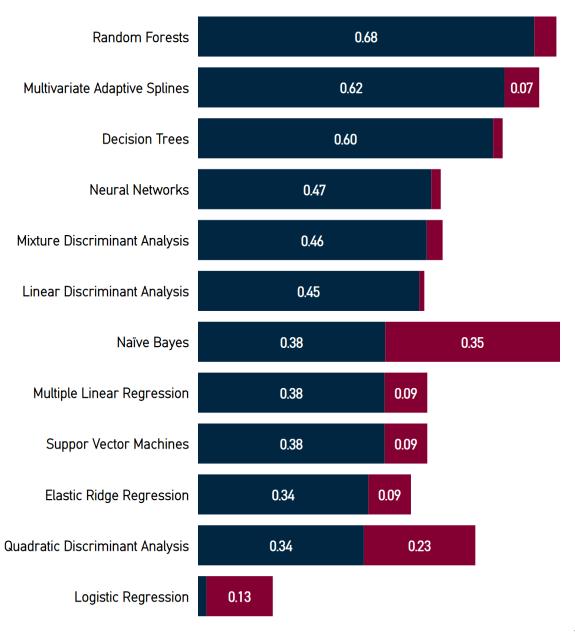
Predictive Methods

Method	Description	
Naïve Bayes' Classifier	Probability-based classifier	
Multiple Linear Regression	Linear relationship between multiple independent variables and a dependent variable	
Logistic Regression	Probability-based classification for binary outcomes	
Elastic Net Regression	Selects and weighs variables for accurate predictions in complex datasets	
Linear Discriminant Analysis	Maximizes class separability in linearly transformed feature space	
Quadratic Discriminant Analysis	Extension of LDA, considers quadratic decision boundaries	
Mixture Discriminant Analysis	Combine both linear and quadratic components for a more adaptable decision boundary	
Decision Trees	Hierarchical tree structure for decision-making	
Random Forests	Ensemble of decision trees for improved accuracy	
Multivariate Adaptive Regression Splines (MARS)	Flexible non-linear regression technique	
Artificial Neural Networks (ANN)	Mimics human brain structure for complex tasks	
Support Vector Machines (SVMs)	Finds optimal hyperplane for classification tasks	

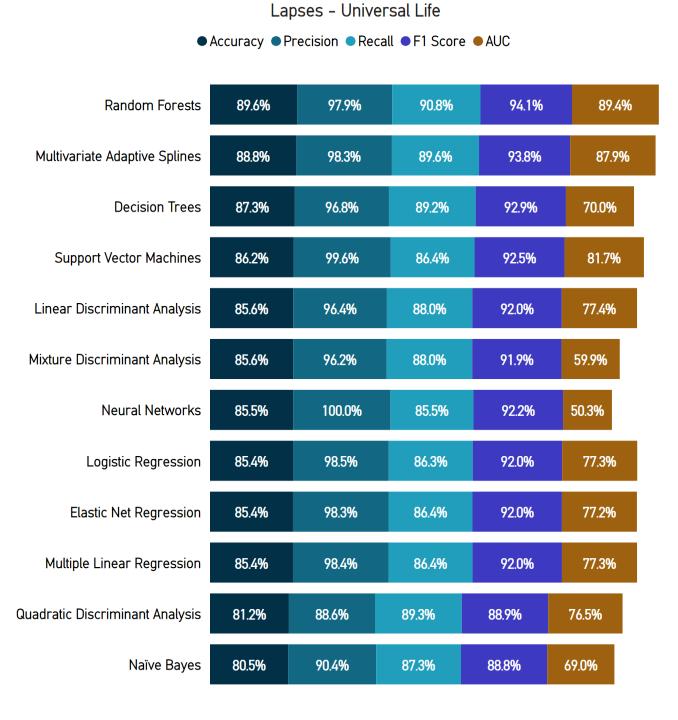
Results

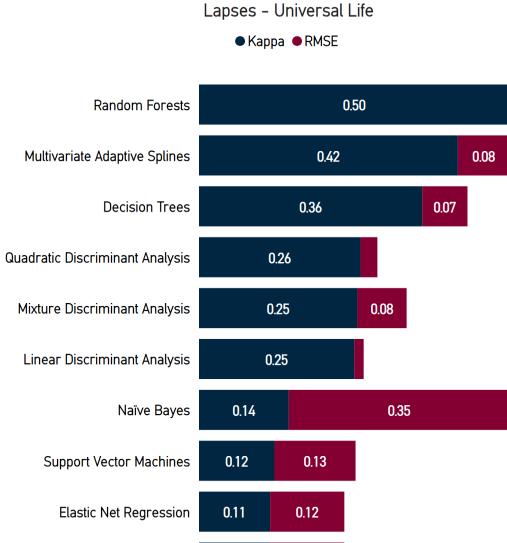


● Kappa ● RMSE



Lapses – Traditional Life





0.11

0.11

0.15

0.12

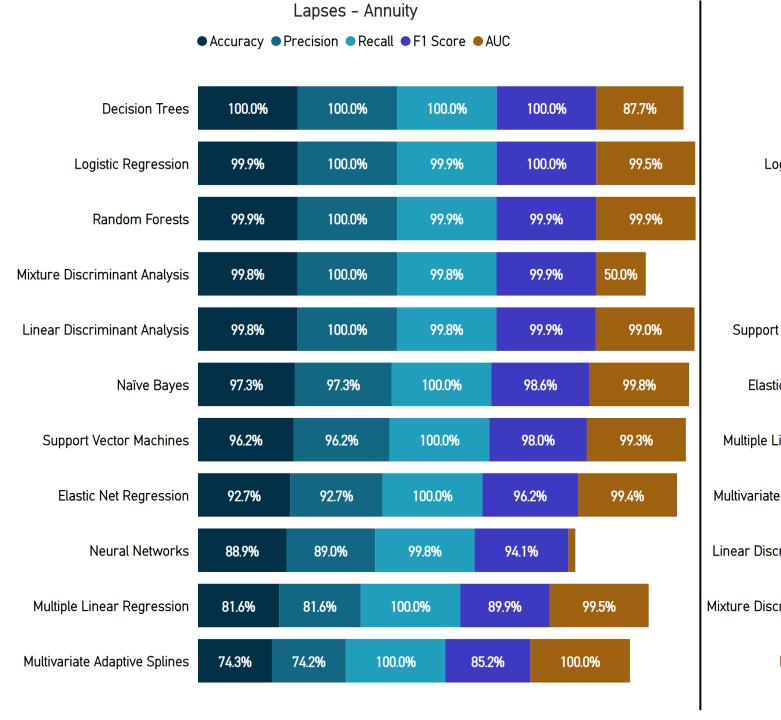
0.12

Multiple Linear Regression

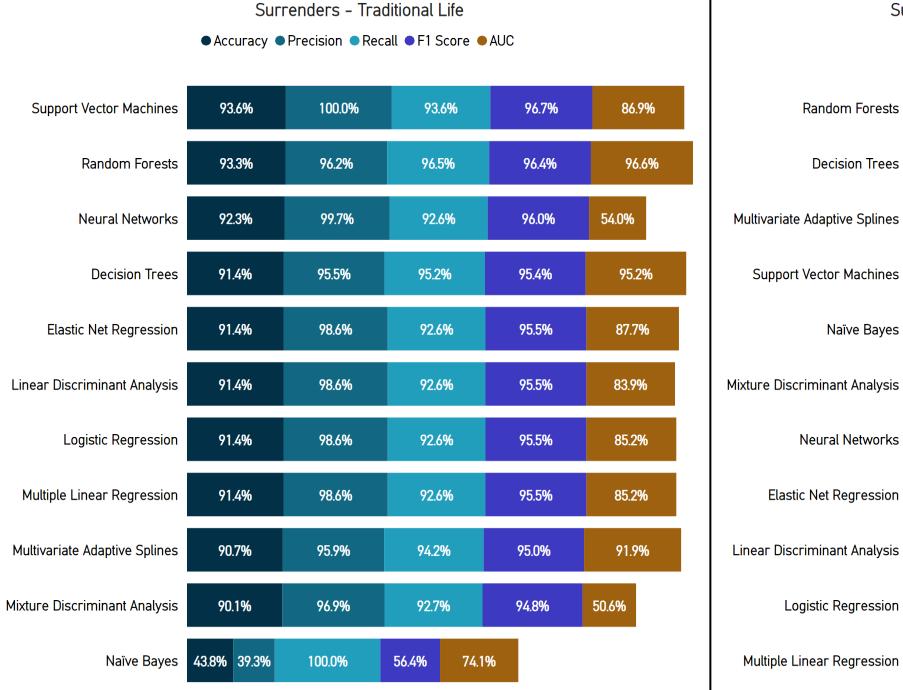
Logistic Regression

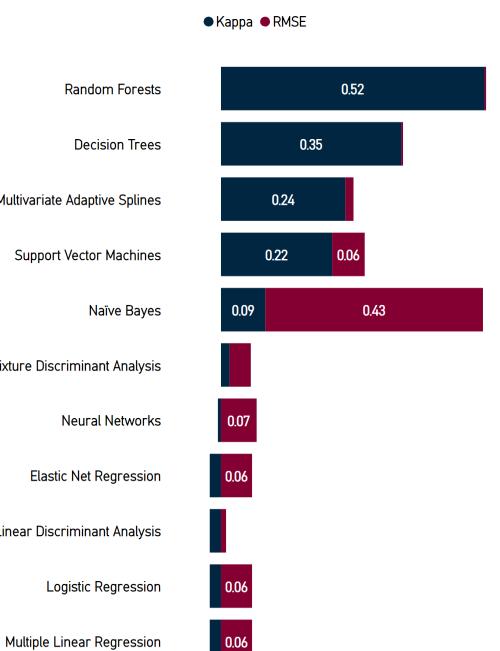
Neural Networks

0.06



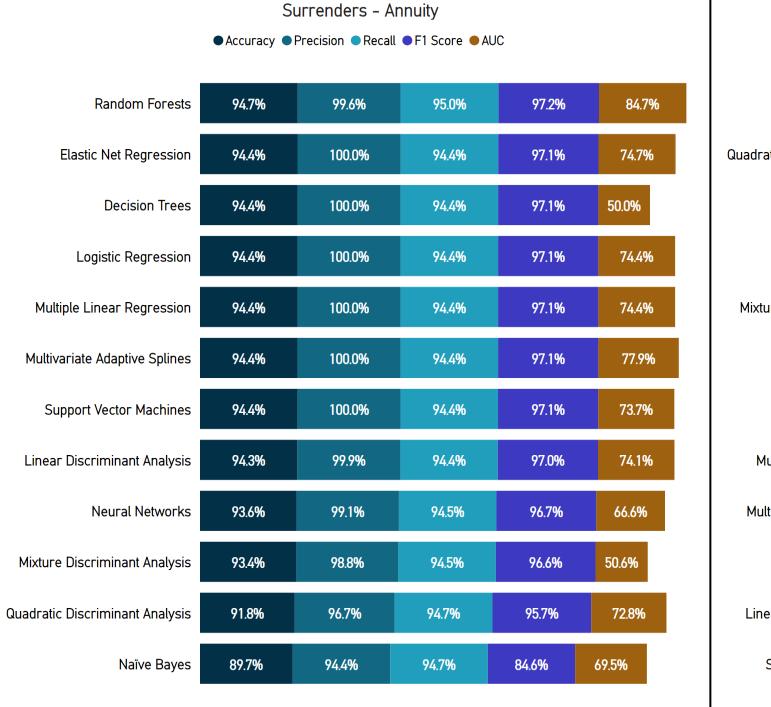
	Lapses - ●Kappa		
Decision Trees		0.86	
Logistic Regression		0.67	
Random Forests	0.40		
Naïve Bayes	0.12	0.50	
oort Vector Machines	0.09		
astic Net Regression	0.07		
e Linear Regression	0.18		
iate Adaptive Splines	0.26		
Discriminant Analysis			
Discriminant Analysis			
Neural Networks	0.11		





Surrenders - Traditional Life

Surrenders - Universal Life ● Kappa ● RMSE Elastic Net Regression 0.36 0.08 0.05 Naïve Bayes 0.45 Random Forests 0.36 Neural Networks Logistic Regression Support Vector Machines Multiple Linear Regression **Decision Trees** Multivariate Adaptive Splines Linear Discriminant Analysis



Surrenders – Annuity			
	🔵 Карра 🔎	RMSE	
Random Forests	0.18	0.05	
atic Discriminant Analysis	0.08		
Naïve Bayes	0.05	0.44	
Neural Networks	0.05		
ure Discriminant Analysis	0.04		
Elastic Net Regression	0.06		
Logistic Regression	0.06		
ultiple Linear Regression	0.06		
ltivariate Adaptive Splines	0.06		
Decision Trees	0.06		
ear Discriminant Analysis			
Support Vector Machines	0.06		

Discussion

Model's Performance

Though many models performed well, the following models were the best in each category:

Place	Traditional Life	Universal Life	Annuity
1st Place	Random Forests	Random Forests	Logistic Regression
2nd Place	Multivariate Adaptive Regression Splines	Multivariate Adaptive Regression Splines	Random Forests
3rd Place	Decision Trees	Support Vector Machines	Decision Trees

<u>Lapses</u>

Continued...

Surrenders

Place	Traditional Life	Universal Life	Annuity
1st Place	Random Forests	Random Forests	Random Forests
2nd Place	Decision Trees	Elastic Net Regression	Neural Networks
3rd Place	Support Vector Machines	Multivariate Adaptive Regression Splines	Quadratic Discriminant Analysis

Conclusion and Future Research

Conclusion

• On average, the Random Forests model performed the best

Future Research

- Investigate the use of macroeconomic variables, in addition to those used in this research
- Explore other modeling methods

Thank You!!