

Quantifying Uncertainty for AI-based Solvency Capital Estimation

EAA e-Conference on Data Science & Data Ethics

14 May 2024

Mark-Oliver Wolf

Fraunhofer Institute for Industrial Mathematics

REGULATORY REQUIREMENTS

Data - Ethics - Actuary

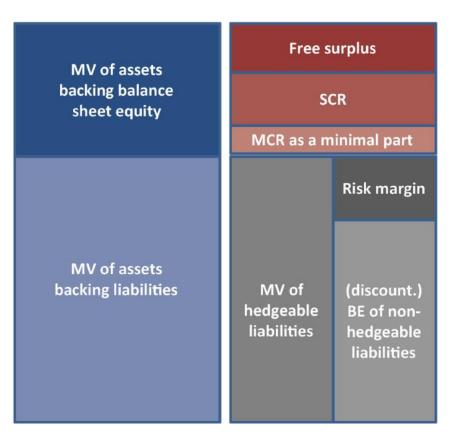
WHAT ARE WE CONCERNED WITH IN SOLVENCY II?

A VERY SHORT INTRODUCTION

Solvency Capital Requirement (SCR)

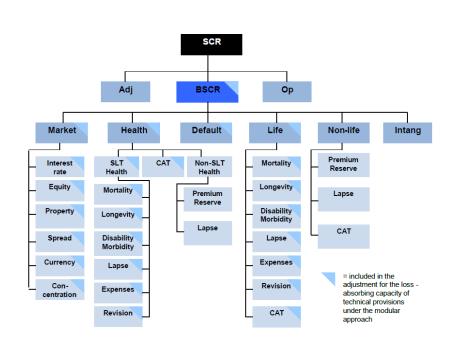
In summary:

Every insurance company must hold enough capital to cover its obligations ("liabilities") at the time of calculation to ensure that it still solvent after one year **with a probability** of 99.5%.



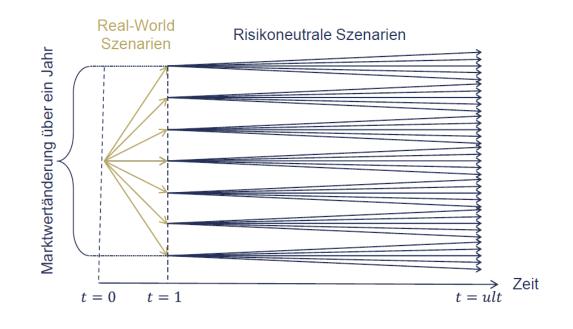
INSURERS HAVE TWO OPTIONS TO CALCULATE THEIR SCR

THE COMPANY HAS TO CHOOSE ONE OF THEM



Standard formula

Internal Model



THE STANDARD FORMULA IN SOLVENCY II

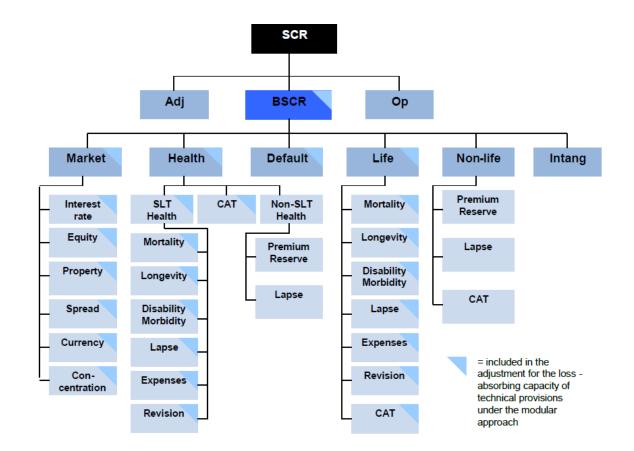
A SIMPLIFIED APPROACH THAT MIGHT HAVE HIDDEN COSTS?

A first solution: Use standard formula procedures in accordance with Solvency II requirements.

Data - Ethics - Actuary

- Highly simplified aggregation of the risks of the individual factors
- Provides little value for value-oriented corporate management
- Implicit distribution assumptions

Might be expensive due to a high amount of tied-up capital!



Schema to calculate the SCR in the standard formula

Fundamental and the second sec

THE INTERNAL MODEL IN SOLVENCY II

NESTED MONTE-CARLO SIMULATION AS A PSEUDO SOLUTION

Alternative:

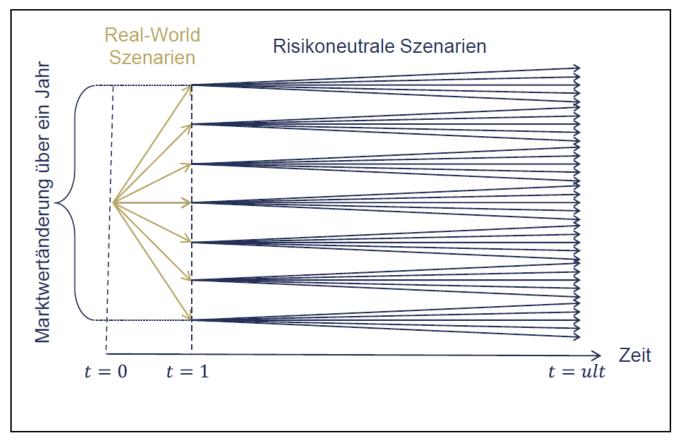
"Complete simulation in the internal model"

Advantages:

(Almost) exact. Perfect implementation of the internal model. Easy to understand.

Serious disadvantage:

Not efficient and cannot be used for real time projections.



Schema of nested Monte-Carlo simulation in Solvency II

Data - Ethics - Actuary

WHAT ARE WE CONCERNED WITH IN SOLVENCY II?

A VERY SHORT INTRODUCTION

Solvency Capital Requirement (SCR)

In summary:

Every insurance company must hold enough capital to cover its obligations ("liabilities") at the time of calculation to ensure that it still solvent after one year **with a probability** of 99.5%.

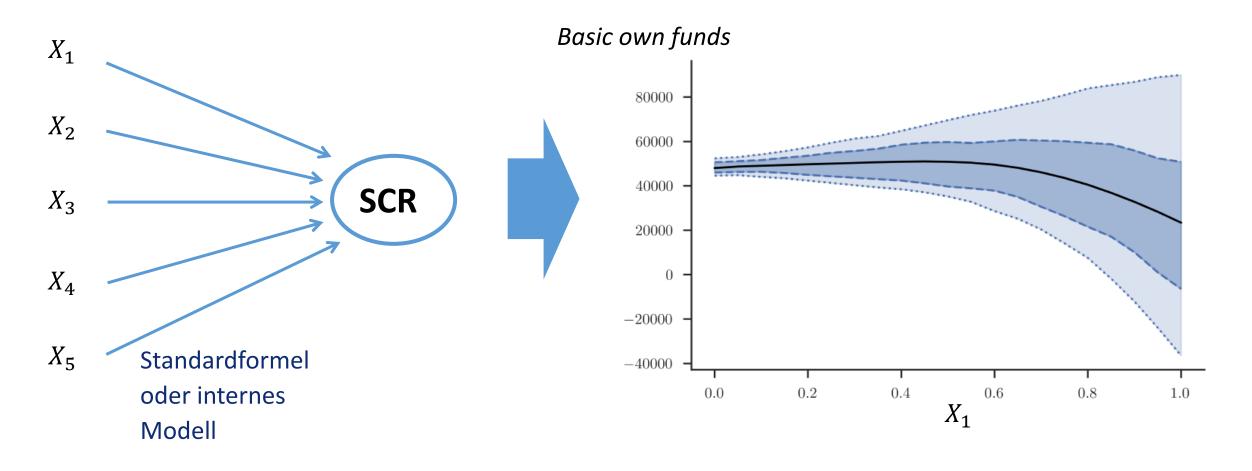
Problem(s):

- How can the SCR (or the SCR quotient) be calculated **reliably and efficiently**? Are we able to reuse previous results?
- Do solutions exist that are sufficiently customizable, but do not have to be completely new developments?

THE LEAST-SQUARES MONTE-CARLO TECHNIQUE

WHY IS THE CALCULATION OF THE SCR ESSENTIALLY JUST A FUNCTION?

USING REGRESSION, WE CAN LEARN A MODEL BASED ON EVALUATED DATA POINTS



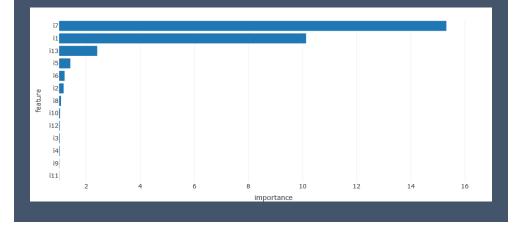
RANKING AND CLUSTERING ALLOW US TO FIND REPRESENTATIVE RISK FACTORS

THIS REDUCES THE TIME AND EFFORT REQUIRED TO COLLECT AND PREPARE THE DATA ENORMOUSLY!

Ranking

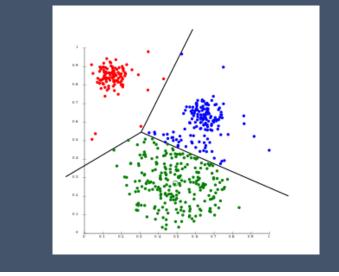
Model independent: Pearson's R Model dependent: F-regression, mutual info regression, SHAP Values, Permutation Feature Importance

Data - Ethics - Actuary



Clustering

Different risk factors **that are similar** are grouped together and represented by a risk factor.



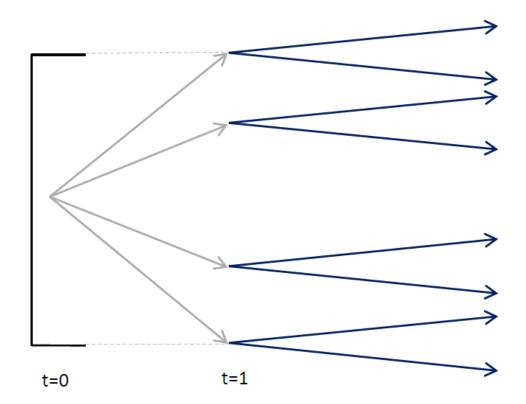
APPROXIMATING THE INTERNAL MODEL IN SOLVENCY II

THE LEAST-SQUARES MONTE-CARLO TECHNIQUE TO SPEED UP THE PROCESS

Least-Squares Monte Carlo

Reduce the **number of expensive paths** dramatically

- Train a regression function as a substitute for the expensive simulation of the inner loop
- Validate the regression function
- **Simulate** new external scenarios needed for SCR calculation and obtain value via the obtained regression function



Scheme of the choice of calibration paths in the LSMC approach (from DAV (2015))

APPROXIMATING THE INTERNAL MODEL IN SOLVENCY II

CHOICE OF REGRESSION MATTERS, BUT METHOD INTRODUCES NEW INTRICALITIES

Choice of regression method

Linear regression

- Good fit to data for regression function with many terms
- For a given number of terms, the optimal solution ("best fit") is obtained exactly by solving a system of linear equation.

Neural networks

- Better fit to data possible
- Best solution can only be approximated numerically

Possible problems:

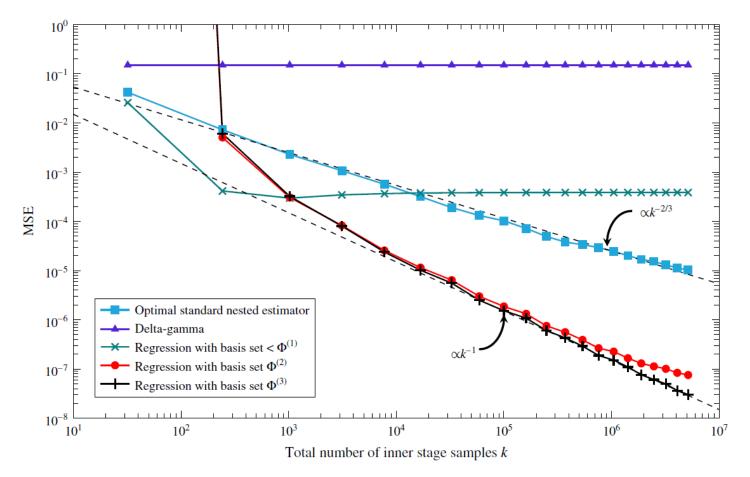
Performance of the methods depends on the **quality/quanti**ty of existing data

Neural networks tend to over-fit, application requires experience and understanding

Position of the regulators is not yet finally clear with neural networks => explainability!

FASTER CONVERGENCE OF VAR-ESTIMATOR FOR LEAST-SQUARES MONTE CARLO

COMPARISON OF DIFFERENT LINEAR REGRESSIONS BASIS SETS AND THE NAIVE APPROACH TO ESTIMATE THE VALUE-AT-RISK BY BROADIE ET AL (2015)



ESTIMATIONS AND FORECASTS WITH NEURAL NETWORKS

Data -Ethics - Actuary

AI MODELS FOR REGRESSION

ARTIFICIAL NEURAL NETWORKS AS A STARTING POINT

Artificial Neural Networks:

Every node outputs $z_{i,k}$ with:

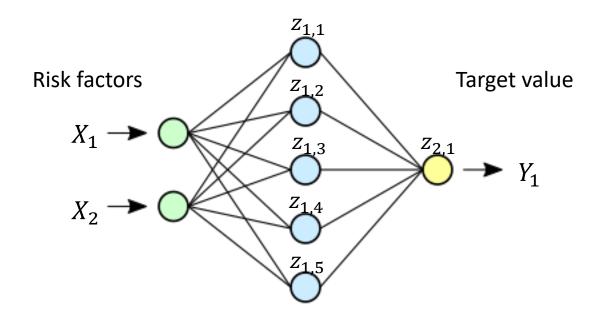
$$z_{j,k} = \varphi\left(\sum_{i=1}^{n_j} w_{j,i} z_{j-1,i} + w_{j,0}\right),$$

where

W _{j,i}	
$W_{j,0}$	

 φ

trainable weight
trainable bias
activation function



USAGE OF NEURAL NETWORKS AS PROXY MODELS IN SOLVENCY II

A COMPARISON OF TEN TRAINED NETWORKS, THEIR ENSEMBLE AND A POLYNOMIAL REGRESSION

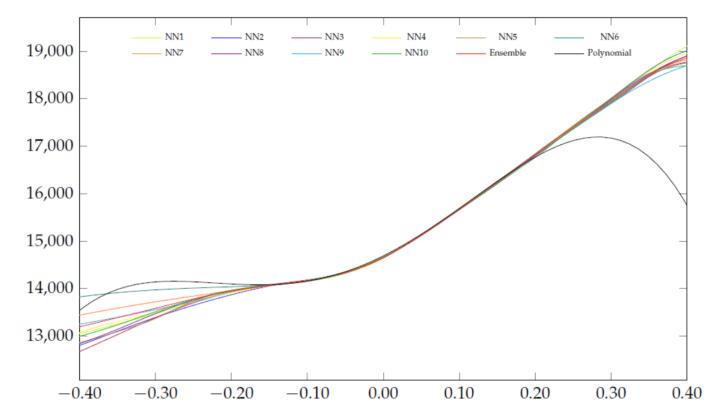


Figure A4. One-dimensional curves of the 10 best performing neural networks, their ensemble and the polynomial with respect to X_8 .

APPLICATION OF ENSEMBLE NEURAL NETWORK AS A PROXY MODEL IN SOLVENCY II

TWO DIMENSIONAL VISUALIZATION SHOWS STRONG DEPENDENCE OF RISKFREE INTEREST RATE AND STOCK INVESTMENT

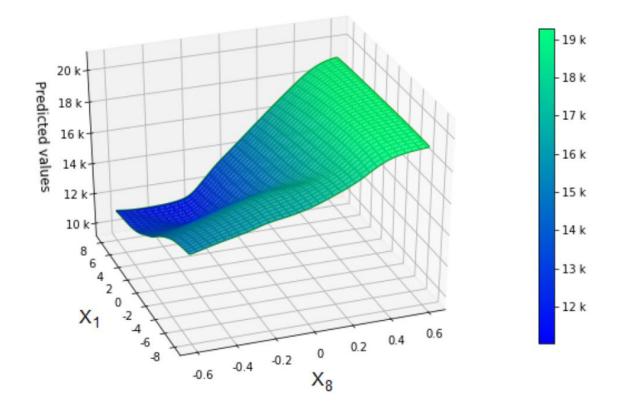


Figure A5. Two-dimensional curve of the ensemble of 10 best performing neural networks with respect to X_1 and X_8 .

CERTAINTY WITH AI-BASED FORECASTING?

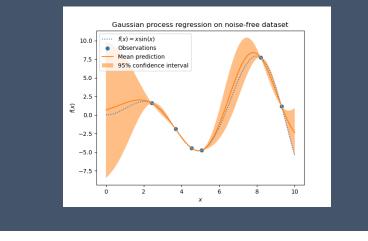
PROBABILISTIC MODELS

HOW CAN WE USE THE ADDITIONAL INFORMATION FOR MORE EXPLAINABILITY?

Gaussian Process Regression:

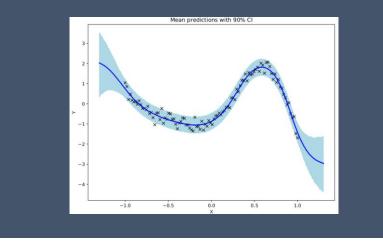
Kernel method with Bayesian approach, evaluates new data based on already known, similar data.

Parameters have learnable distributions.

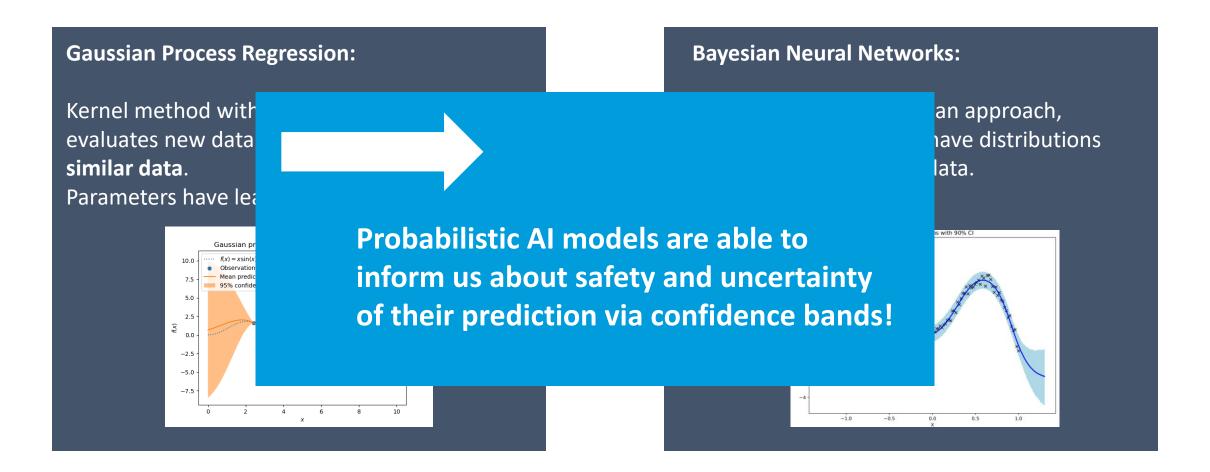


Bayesian Neural Networks:

Artificial NNs with Bayesian approach, Weights of the network have distributions which are learned from data.

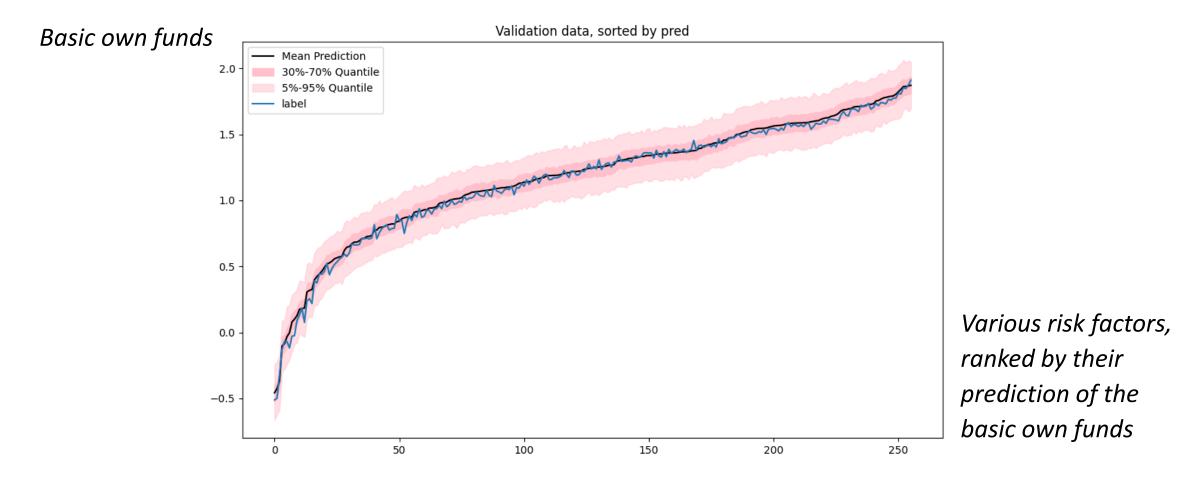


HOW CAN WE USE THE ADDITIONAL INFORMATION FOR MORE EXPLAINABILITY?



PROBABILISTIC AI MODELS: BAYESIAN NEURAL NETWORKS

USING THE EXAMPLE OF THE PUBLIC DAV DATA SET FOR SCR CALCULATION WITH AN INTERNAL MODEL



PROBABILISTIC AI MODELS: BAYESIAN NEURAL NETWORKS

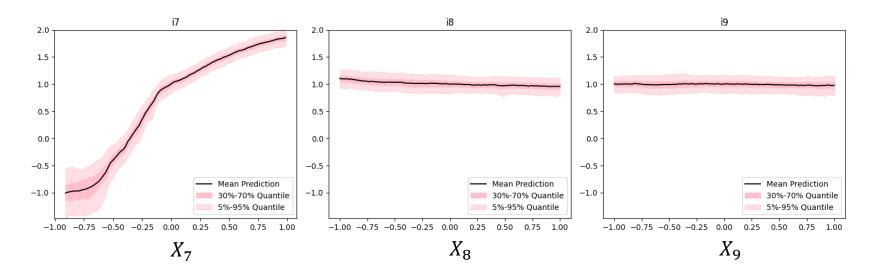
THE AI MODEL TELLS US WHEN IT IS CERTAIN ABOUT THE PREDICTION

We look at the model in the middle of the training data

We vary one risk factor and set all other risk factors to a fixed value within the data

We observe:

- → Small confidence bands
- → The AI model is **certain** of the **prediction** (mean prediction)



PROBABILISTIC AI MODELS: BAYESIAN NEURAL NETWORKS

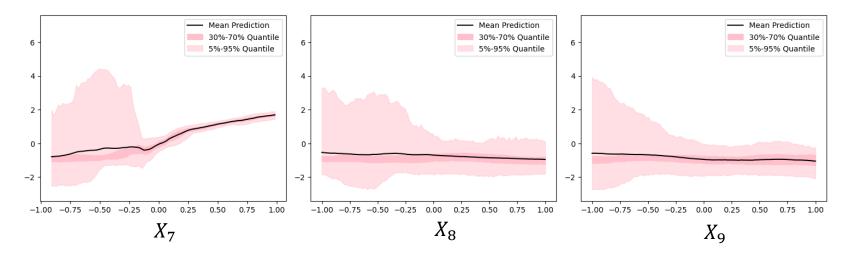
THE AI MODEL TELLS US WHEN IT IS UNCERTAIN ABOUT THE PREDICTION

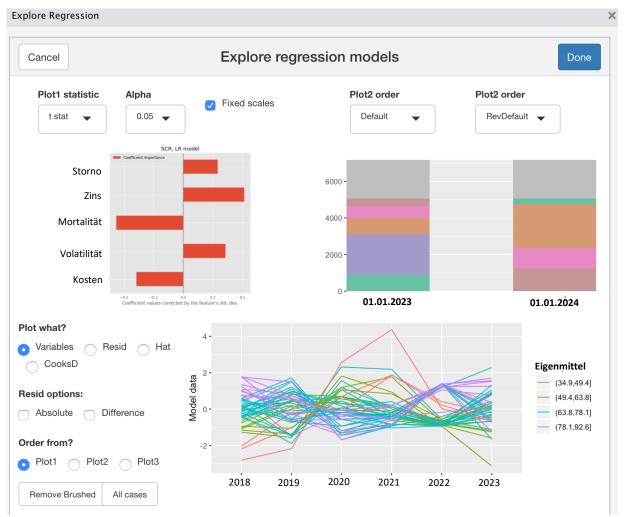
We look at the model at the edge of the training data

We vary one risk factor and set all other risk factors to a fixed value at the edge of the data

We observe:

- → Partially **large** confidence bands
- \rightarrow Prediction (mean prediction) not always at the median
- → The **AI model informs us** about its **uncertainty** at the edge of the training data





- An app accessible via the browser on the intranet for monthly updated estimates of the basic own funds, SCR and solvency ratio.
- Possible effects of changes in selected risk factors are shown.
- Explainability of past basic own funds, SCR and solvency ratio values.
- Data remains internal and is not uploaded to a cloud.

Example of a web app

- Nov. 2023 Present: PhD Student of Prof. Ralf Korn, topic: "Mathematical and Machine Learning Aspects of the Solvency Capital Requirement Calculation."
- Oct. 2023 Present: Research Coordinator for Actuarial and Financial Mathematics at Fraunhofer ITWM
- Mar. 2022 Sep. 2023: Applied Researcher in Actuarial and Financial Mathematics at Fraunhofer ITWM
- 2017 2022: B.Sc. and M.Sc. in (Actuarial and Financial) Mathematics at Technische Universität Kaiserslautern

ABOUT ME

Mark-Oliver Wolf

Fraunhofer ITWM Institute for Industrial Mathematics

Thank you very much for your attention

EAA e-Conference on Data Science & Data Ethics

14 May 2024

Contact

Mark-Oliver Wolf Fraunhofer ITWM +4963131600-4161 mark-oliver.wolf@itwm.fraunhofer.de