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Structure

1. Changes in age patterns of mortality decline
2. Measuring rotation
3. Modeling rotation

%:‘?% 4. Impact of COVID-19 on rotation

5. Impact of COVID-19 on trend and volatility
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Mortality iImprovement rates

« Mortality improvement rates (m: mortality rate, x: age, t: year, c: country,

g. gender):
g _ cg cg
et = In Myt In mx,t+1

» These depend heavily on all four parameters.
 Higher for infants and children than for seniors.

» Typically decreasing in time for infants and children,
and increasing in time for seniors.
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Rotation of mortality decline

 Decline tends to slow down in
younger ages and speed up in
older ages in the long run.

* Li, Lee and Gerland (2013) call
this the ‘rotation’ of the age pattern
of mortality decline.

mortality improvement rate

» Observed mostly in developed
countries.

age



Example: Cyprus (1955 and 2015)
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Drivers of rotation

» Decline tapering off for infants and children:
« Little room for improvement in vaccination rates (~100%)
» Death due to child starvation largely eliminated
* Premature infant incubators

* Improved sanitation, access to clean water, better care
during pregnancy and childbirth

» Decrease in infant mortality in Hungary between 1950 and 2020:
by factor of 27
» Accelerating decline for seniors:
* Progress in treating chronic diseases
« Advancements in surgical techniques and costly medical technology
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Rotation in the literature

« Kannisto et al. (1994). accelerating mortality decline in ages 80 to 99
between 1950 and 1989 in 27 countries.

» Horiuchi and Wilmoth (1995): rotation in Sweden.

» Lee and Miller (2001): comparison of average rates of mortality decline by
age in 1st and 2nd halves of 20th century.

« Carter and Prskawetz (2001): Lee—Carter models on Austrian data using
sliding time windows.

« Rau et al. (2008) and Christensen et al. (2009): acceleration of mortality
decline in ages 80+ since 1950 in some countries out of 30.

» Vékas (2020): measure of rotation, evidence for rotation since 1950 in
several EU countries.
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Practical significance

» Differences between rotated and unrotated forecasts: minor in short run,
but huge in long run!

Ignoring rotation leads to underestimation of old-aged population and
overestimation of young-aged population.

This exacerbates longevity risk in life insurance, pensions and social
security.

For long-term forecasts, assessing rotation is crucial.
If present, it should be modeled appropriately.
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Measuring rotation (vekas, 2020)

» Acceleration rate: slope of linear trend of mortality improvement rates

cg

Irfct

cg _ _cg ) cg
Tap = O +t + 7




Measuring rotation (vekas, 2020)

* p measure of rotation:

Spearman’s p rank correlation coefficient between acceleration and
age, weighted by population counts

* p =1 if and only if acceleration is a strictly increasing function of age
* t test of rotation:
Hp:p=0



Rotation in EU — Data

« UN World Population Prospects 2017, 28 European Union member states
» Mortality rates, life expectancies at birth and population counts

« 22 age groups

» Separately by gender

» 13 periods (1950-1955 up to 2010-2015)
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Rotation in EU — Results (men)
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Lee—Carter model including rotation

* Original Lee—Carter (1992) model:
In Myt = Ay + bwkt + E.¢

* As k, declines over time, coefficients b, determine rates of improvement by
age. These are independent of time!

* Model variant of Li, Lee and Gerland (2013) including rotation, used by UN
In long-term projections:

Inmy = a, + Bz, )k + €44

* Improvement rates are weighted means of initial (from LC model) and
hypothetical limiting values:

B(z,t) = (1 = ws(t))bo() + ws(t)bu ()
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Lee—Carter model with rotation

« ,Raw” weights increase linearly from O to 1 after LC period life expectancy
at birth reaches a hypothetical threshold until it reaches a hypothetical
maximum;

w(t) =

eo (t) eStaTt

u start
€0 —€p

» “Smooth” weights computed from “raw” weights (zero if life expectancy at
birth is below 80 years), and exponent p governs speed of rotation:

we(t) = {0.5 |1 +sin |5 (2w(t) — 1)]]}?
» Two hyperparameters not optimized by authors: they assume threshold
estart = 80 years and exponent p = 0.5.



Rotation of B(x,t)

assumed limiting b¥,
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Rotated and unrotated forecasts

Logarithmic mortality rate

==age 0 (no rotation) =ages 50 to 54 (no rotation) ==ages 80 to 84 (no rotation)

= =age 0 (with rotation) = = ages 50 to 54 (with rotation) = = ages 80 to 84 (with rotation)
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Rotated/unrotated forecasts in 2100

5

>4 for ages 1-4 years

<0.5 for ages 50-74 years

Quotient of mortality rates with and without rotation
(2095-2100)
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Impact of COVID-19 on rotation

* The pandemic has changed the picture significantly since it emerged in
early 2020.

» Seniors were more susceptible to die, which has moderated rotation.

» Impact of COVID-19 assessed by comparing rotation measures including
and excluding data from 2020 (and 2021, if available).

» Mortality data still scarce for 2022.

22



Impact of COVID-19 on rotation — Data

 Human Mortality Database (www.mortality.org)

» Mortality rates and population counts from all 42 countries
» 1x1 data from 1950 up to last available year

« Ages 0 to 100 years

» Separately for males and females

23


http://www.mortality.org/

Impact — men
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Impact —women

1.00-
0.75-
0.50-
0.25-

0.00-

1 ] ]
BEL CHE DNK ESP FIN HUN JPN LTU LUX NOR PRT SWE
country

25



'-—w

< susrans®™

Mean rotation including and excluding 2020

Period Male Female Total

1950 to 2019 0.28 0.37 0.32

1950 to 2020 0.21 0.33 0.27

26
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Rotation has taken a hit

 COVID has decreased rotation for males in 5 out of 8, and for females
In 7 out of 8 countries where there had been significant rotation.

* It has completely wiped out trends of 70 years in some countries!

» As seen earlier, rotation strongly impacts long-term forecasts. Even minor
changes lead to huge differences in long run!

* Important to be aware of and consider options to model COVID-109.
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How (not) to incorporate data from
COVID years into forecasts?

1. Treatthem as outliers
« Remove them from training data (use years only up to 2019)

« Add dummy variables representing years of COVID-19 to time series
forecasting model: how Lee and Carter (1992) handled Spanish flu

« Leave them in training data, but remove COVID-19 deaths

2. Treat them as meaningful
« Leave them as they are
« Assume (e.g., exponential) decay of shock




Impact of inclusion vs exclusion
of 2020 on k, in Hungary
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Impact of inclusion vs exclusion
of 2020 on mg,, In Hungary

* including_2020
nnnnnnnnnnnnn

31



—-—7‘”
LA 2

Impact of inclusion vs exclusion of 2020 o
on mortality

» Death rate of 80-year-olds only 9% higher in 2020 than in 2019.

* Yet due to cumulative behavior, LC forecasts it to be 30% higher in 2100
If including COVID year 2020 in training period.

* No data for 2021 yet: joint impact of 2020 and 2021 will be even much
higher!

« Conclusion: long-term mortality forecasts extremely sensitive to how we
handle COVID years.

* Pricing of products affected by mortality risk extremely sensitive to how
we handle COVID years.

32



e ——EE ““m
A
Impact of inclusion vs exclusion of 2020
on longevity

» Cohort life expectancy at age 65 is 18.4 years if excluding and 17.5 years
if including 2020 in training data.

« Difference: 0.9 years, or 5%.
* No data for 2021 yet: joint impact of 2020 and 2021 will be much higher!

« Conclusion: Pricing of products affected by longeuvity risk fairly sensitive
to how we treat COVID years.

89
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How (not) to incorporate data from
COVID years into forecasts?

* Removing COVID years: more prudent for annuities and pensions.
* Including them: more prudent for term life and endowment products.
« Milliman White Paper (September 2023): Impact of COVID-19 on best
estimate mortality assumptions
» Replacing 2020 mortality by average of previous N years
« Jump process in model of k; (Chen and Cox, 2009)
« Subjective weighting of years (UK CMI: 2020/21: 0%, 2022: 25%).




Slope and volatility of forecasts

Forecasts from Random walk with drift
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Impact of excluding 2020 on slope by country

FIGURE 4: TREND RELATIVE DIFFERENCES BETWEEN THE TWO STEPS
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Impact of excluding 2020 on volatility by country

FIGURE 5: VOLATILITY RELATIVE DIFFERENCES BETWEEN THE TWO STEPS
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How (not) to incorporate data from
COVID years into forecasts?

« Trend and volatility most affected by excluding 2020 in countries with high
deaths tolls.

» Unexplored long-term impact:
« Mutations,
* Long COVID.

» Epidemiologists can hopefully keep providing updated assumptions.

38



Structure

Changes in age patterns of mortality decline
Measuring rotation
Modeling rotation

Impact of COVID-19 on rotation
Impact of COVID-19 on trend and volatility

Novel forecasting methods (ongoing joint work
with Laszlé Kovacs and Ronald Richman)



Applications of Al in actuarial work

« Mortality forecasting
Reserve calculations

Lapse models

Non-life premium calculation
Fraud detection
Underwriting

etc.

40
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Al for mortality forecasting

* Recurrent neural networks (Richman and Wuthrich, 2019)

» Feedforward neural networks for multiple populations (Richman and
Wathrich, 2021)

» Lee—Carter + Long-Short Term Memory networks (Nigri et al., 2019)

» Bootstrap confidence intervals for LC-LSTM (Marino, Levantesi and Nigri,
2021)

« Convolutional neural networks (Perla et al., 2021, Schnurch and Korn,
2022)

» Tree-based models (Levantesi and Pizzorusso, 2019, Levantesi and Nigri,
2020)

* etc.

41
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Al methods to capture long-term rotation

« Kovacs, L., Richman, R. and Vékas, P.: Al in Longevity Risk Management
— Improved Long-Term Forecasts by Machine Learning (coming soon).

» Sponsored by AFIR-ERM section of IAA.

» Four methods proposed:
« Hyperparameter tuning of LC model including rotation,
» Generalized additive model on LC residuals,
» Deep feedforward neural network,
« Stacking ensemble of previous three.
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Demographic data
« Data from Human Mortality Database (HMD) for 38 countries for 1950-2018

 Training, validation and test periods:
« Train: 1950-1990
« Validation: 1990-1999
» Test: 2000-2018
* Models fit in two rounds:
» Fit on Train and test on Validation — hyperparameter tuning

« Fit best models on Train + Validation and test on Test
— measuring out-of-sample performance
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Hyperparameter tuning of rotated LC model

MSE as a function of p and €0l on Validation Set - Females in Spain
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GAM on LC residuals

* LC residuals are not IID if there is rotation.

* We can extract meaningful information from them by fitting bivariate spline
functions (piecewise polynomials) of x and t to them.

» Hyperparameters: number of knots of splines, and spline fitting method
(several available in mgcv package of R).

h(x,t) fitted on
Spanish female population




Deep feedforward network

« Inputs: country, gender, age U

embeddings, and year (numeric)
» Outputs: parameters of LC model

(hypernetwork: outputs parameters
of another model)

» Boosting: adding second network \
that captures rotation o
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Input Layer € R'®

Hidden Laver € R Hidden Layer € R® Output Layer € R
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Basic LC network

Country Embedding Age Embedding Gender Embedding




Boosted LC network

Country Embedding

Age Embedding

Gender Embedding

My =€

ay+b}kl +b% .k
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Stacking

« Simple unweighted average of predictions of other three models (robust
ensemble, Jose and Winkler, 2008).
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Number of wins by method and gender

Method Female Male Total
Vanilla LC 7 3 10
Rotated LC 7 9 16

LC-GAM 4 14 18

LC-ANN (boosted) 9 7 16

Stacking 11 5 16

Total 38 38 76




LC_SVD_Male
LCwithGAM_Male
NN_Boost_Male
No_Data
RotatedLC_Male
Stacked_Male



Best models for females

LC_SVD_Female
LCwithGAM_Female
NN_Boost_Female
No_Data
RotatedLC_Female
Stacked_Female
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Takeaways

« Mortality improvement shifting from younger to older ages (rotation).
 This significantly affects long-term forecasts and increases longevity risk.
» Lee—Carter ignores this and can thus be very inaccurate in long run.

» Rotation should be assessed before picking a forecasting method.

« COVID-19 makes long-term forecasts go haywire (age pattern of decline,
slope and volatility!).

» Several ways to (or not to) incorporate it into forecasts.
* New Al methods capturing rotation can greatly outperform LC.
« Various techniques work best for different countries.
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Thank you for your attention!
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