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4. Impact of COVID-19 on rotation

5. Impact of COVID-19 on trend and volatility

6. Novel forecasting methods



Mortality improvement rates
• Mortality improvement rates (𝑚: mortality rate, 𝑥: age, 𝑡: year, 𝑐: country, 

𝑔: gender): 

• These depend heavily on all four parameters.

• Higher for infants and children than for seniors.

• Typically decreasing in time for infants and children,            
and increasing in time for seniors.

𝑟𝑥𝑡
𝑐𝑔

= ln 𝑚𝑥𝑡
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Rotation of mortality decline 

• Decline tends to slow down in 
younger ages and speed up in 
older ages in the long run.

• Li, Lee and Gerland (2013) call 
this the ‘rotation’ of the age pattern 
of mortality decline.

• Observed mostly in developed 
countries.



Example: Cyprus (1955 and 2015)



Drivers of rotation
• Decline tapering off for infants and children:

• Little room for improvement in vaccination rates (~100%)

• Death due to child starvation largely eliminated

• Premature infant incubators

• Improved sanitation, access to clean water, better care 
during pregnancy and childbirth

• Decrease in infant mortality in Hungary between 1950 and 2020:       
by factor of 27

• Accelerating decline for seniors: 

• Progress in treating chronic diseases

• Advancements in surgical techniques and costly medical technology



Rotation in the literature
• Kannisto et al. (1994): accelerating mortality decline in ages 80 to 99 

between 1950 and 1989 in 27 countries.

• Horiuchi and Wilmoth (1995): rotation in Sweden.

• Lee and Miller (2001): comparison of average rates of mortality decline by 
age in 1st and 2nd halves of 20th century.

• Carter and Prskawetz (2001): Lee–Carter models on Austrian data using 
sliding time windows.

• Rau et al. (2008) and Christensen et al. (2009): acceleration of mortality 
decline in ages 80+ since 1950 in some countries out of 30.

• Vékás (2020): measure of rotation, evidence for rotation since 1950 in 
several EU countries.



Practical significance
• Differences between rotated and unrotated forecasts: minor in short run,

but huge in long run!

• Ignoring rotation leads to underestimation of old-aged population and 
overestimation of young-aged population.

• This exacerbates longevity risk in life insurance, pensions and social 
security.

• For long-term forecasts, assessing rotation is crucial.

• If present, it should be modeled appropriately.
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Measuring rotation (Vékás, 2020)

• Acceleration rate: slope of linear trend of mortality improvement rates



Measuring rotation (Vékás, 2020)

• r measure of rotation: 

 Spearman’s r rank correlation coefficient between acceleration and 
age, weighted by population counts

• r = 1 if and only if acceleration is a strictly increasing function of age

• t test of rotation: 

 H0: r = 0



Rotation in EU – Data
• UN World Population Prospects 2017,  28 European Union member states

• Mortality rates, life expectancies at birth and population counts

• 22 age groups

• Separately by gender

• 13 periods (1950−1955 up to 2010−2015)



Rotation in EU – Results (men)



Rotation in EU – Results (women)
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• Original Lee−Carter (1992) model:

• As kt declines over time, coefficients bx determine rates of improvement by 
age. These are independent of time!

• Model variant of Li, Lee and Gerland (2013) including rotation, used by UN 
in long-term projections:

• Improvement rates are weighted means of initial (from LC model) and 
hypothetical limiting values:

Lee−Carter model including rotation



• „Raw” weights increase linearly from 0 to 1 after LC period life expectancy 
at birth reaches a hypothetical threshold until it reaches a hypothetical 
maximum:

• “Smooth” weights computed from “raw” weights (zero if life expectancy at 
birth is below 80 years), and exponent p governs speed of rotation:

• Two hyperparameters not optimized by authors: they assume threshold 
𝑒0

𝑠𝑡𝑎𝑟𝑡 = 80 years and exponent 𝑝 = 0.5.

𝑒0 𝑡 −𝑒0
𝑠𝑡𝑎𝑟𝑡

𝑒0
𝑢−𝑒0

𝑠𝑡𝑎𝑟𝑡

Lee−Carter model with rotation



Rotation of B(x,t)



Rotated and unrotated forecasts



Rotated/unrotated forecasts in 2100

>4 for ages 1-4 years

<0.5 for ages 50-74 years
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Impact of COVID-19 on rotation

• The pandemic has changed the picture significantly since it emerged in 
early 2020.

• Seniors were more susceptible to die, which has moderated rotation.

• Impact of COVID-19 assessed by comparing rotation measures including 
and excluding data from 2020 (and 2021, if available). 

• Mortality data still scarce for 2022.
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• Human Mortality Database (www.mortality.org)

• Mortality rates and population counts from all 42 countries

• 1x1 data from 1950 up to last available year

• Ages 0 to 100 years

• Separately for males and females
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Impact of COVID-19 on rotation – Data

http://www.mortality.org/


Impact – men

24

−0.5

0.0

0.5

BEL CHE DNK ESP FIN HUN JPN LTU LUX NOR PRT SWE

country

rm

legend

before

after



Impact – women
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Mean rotation including and excluding 2020

Period Male Female Total

1950 to 2019 0.28 0.37 0.32

1950 to 2020 0.21 0.33 0.27
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Rotation has taken a hit
• COVID has decreased rotation for males in 5 out of 8, and for females 

in 7 out of 8 countries where there had been significant rotation.

• It has completely wiped out trends of 70 years in some countries!

• As seen earlier, rotation strongly impacts long-term forecasts. Even minor 
changes lead to huge differences in long run!

• Important to be aware of and consider options to model COVID-19.
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How (not) to incorporate data from 
COVID years into forecasts?

1. Treat them as outliers

• Remove them from training data (use years only up to 2019)

• Add dummy variables representing years of COVID-19 to time series 
forecasting model: how Lee and Carter (1992) handled Spanish flu

• Leave them in training data, but remove COVID-19 deaths

2. Treat them as meaningful

• Leave them as they are

• Assume (e.g., exponential) decay of shock



Impact of inclusion vs exclusion 
of 2020 on kt in Hungary
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Impact of inclusion vs exclusion 
of 2020 on m80t in Hungary

31



Impact of inclusion vs exclusion of 2020 
on mortality

• Death rate of 80-year-olds only 9% higher in 2020 than in 2019.

• Yet due to cumulative behavior, LC forecasts it to be 30% higher in 2100  
if including COVID year 2020 in training period.

• No data for 2021 yet: joint impact of 2020 and 2021 will be even much 
higher!

• Conclusion: long-term mortality forecasts extremely sensitive to how we 
handle COVID years.

• Pricing of products affected by mortality risk extremely sensitive to how 
we handle COVID years.
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Impact of inclusion vs exclusion of 2020 
on longevity

• Cohort life expectancy at age 65 is 18.4 years if excluding and 17.5 years 
if including 2020 in training data.

• Difference: 0.9 years, or 5%.

• No data for 2021 yet: joint impact of 2020 and 2021 will be much higher!

• Conclusion: Pricing of products affected by longevity risk fairly sensitive 
to how we treat COVID years.
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How (not) to incorporate data from 
COVID years into forecasts?

• Removing COVID years: more prudent for annuities and pensions.

• Including them: more prudent for term life and endowment products.

• Milliman White Paper (September 2023): Impact of COVID-19 on best 
estimate mortality assumptions

• Replacing 2020 mortality by average of previous N years

• Jump process in model of kt (Chen and Cox, 2009)

• Subjective weighting of years (UK CMI: 2020/21: 0%, 2022: 25%).



Slope and volatility of forecasts
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volatility proportional to 𝜎

slope 𝜃

(slope of ln 𝑚𝑥𝑡: 𝑏𝑥𝜃)

𝑘𝑡 = 𝑘𝑡−1 + 𝜃 + 𝜎𝜀𝑡

𝜀𝑡~𝒩(0,1)



Impact of excluding 2020 on slope by country
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Source: Auter et al. (2023). Milliman White Paper.



Impact of excluding 2020 on volatility by country
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Source: Auter et al. (2023). Milliman White Paper.



• Trend and volatility most affected by excluding 2020 in countries with high 
deaths tolls.

• Unexplored long-term impact: 

• Mutations,

• Long COVID.

• Epidemiologists can hopefully keep providing updated assumptions.
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How (not) to incorporate data from 
COVID years into forecasts?
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Applications of AI in actuarial work

• Mortality forecasting

• Reserve calculations

• Lapse models

• Non-life premium calculation

• Fraud detection

• Underwriting

• etc.
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AI for mortality forecasting
• Recurrent neural networks (Richman and Wüthrich, 2019)

• Feedforward neural networks for multiple populations  (Richman and 
Wüthrich, 2021)

• Lee−Carter + Long-Short Term Memory networks (Nigri et al., 2019)

• Bootstrap confidence intervals for LC-LSTM (Marino, Levantesi and Nigri, 
2021)

• Convolutional neural networks (Perla et al., 2021, Schnürch and Korn, 
2022)

• Tree-based models (Levantesi and Pizzorusso, 2019, Levantesi and Nigri, 
2020)

• etc.
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AI methods to capture long-term rotation
• Kovács, L., Richman, R. and Vékás, P.: AI in Longevity Risk Management 

– Improved Long-Term Forecasts by Machine Learning (coming soon).

• Sponsored by AFIR-ERM section of IAA.

• Four methods proposed:

• Hyperparameter tuning of LC model including rotation,

• Generalized additive model on LC residuals,

• Deep feedforward neural network,

• Stacking ensemble of previous three.



Demographic data
• Data from Human Mortality Database (HMD) for 38 countries for 1950-2018

• Training, validation and test periods:

• Train: 1950-1990

• Validation: 1990-1999

• Test: 2000-2018

• Models fit in two rounds:

• Fit on Train and test on Validation – hyperparameter tuning

• Fit best models on Train + Validation and test on Test   
   – measuring out-of-sample performance



Hyperparameter tuning of rotated LC model



GAM on LC residuals
• LC residuals are not IID if there is rotation.

• We can extract meaningful information from them by fitting bivariate spline 
functions (piecewise polynomials) of x and t to them.

• Hyperparameters: number of knots of splines, and spline fitting method 
(several available in mgcv package of R).  

ℎ(𝑥, 𝑡) fitted on

Spanish female population



Deep feedforward network
• Inputs: country, gender, age         

embeddings, and year (numeric)

• Outputs: parameters of LC model       
(hypernetwork: outputs parameters        
of another model)

• Boosting: adding second network             
that captures rotation



Basic LC network



Boosted LC network

Country Embedding Age Embedding Gender Embedding Time
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Stacking
• Simple unweighted average of predictions of other three models (robust 

ensemble, Jose and Winkler, 2008).



Number of wins by method and gender

Method Female Male Total

Vanilla LC 7 3 10

Rotated LC 7 9 16

LC-GAM 4 14 18

LC-ANN (boosted) 9 7 16

Stacking 11 5 16

Total 38 38 76



Best models for males



Best models for females



Takeaways
• Mortality improvement shifting from younger to older ages (rotation).

• This significantly affects long-term forecasts and increases longevity risk.

• Lee−Carter ignores this and can thus be very inaccurate in long run.

• Rotation should be assessed before picking a forecasting method.

• COVID-19 makes long-term forecasts go haywire (age pattern of decline, 
slope and volatility!).

• Several ways to (or not to) incorporate it into forecasts.

• New AI methods capturing rotation can greatly outperform LC.

• Various techniques work best for different countries.



Thank you for your attention!
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