

CARIBBEAN
ACTUARIAL
ASSOCIATION

CHANGES IN AGE PATTERNS OF MORTALITY DECLINE, THE IMPACT OF COVID-19, AND NOVEL FORECASTING METHODS

Péter Vékás, Ph.D. (Corvinus University of Budapest)

*This presentation has been prepared for the 2023 Caribbean Actuarial Association (CAA) Conference.
The CAA wishes it to be understood that opinions put forward herein are not necessarily those of the CAA and the CAA takes no responsibility for those opinions.*

Structure

1. Changes in age patterns of mortality decline
2. Measuring rotation
3. Modeling rotation

4. Impact of COVID-19 on rotation
5. Impact of COVID-19 on trend and volatility

6. Novel forecasting methods

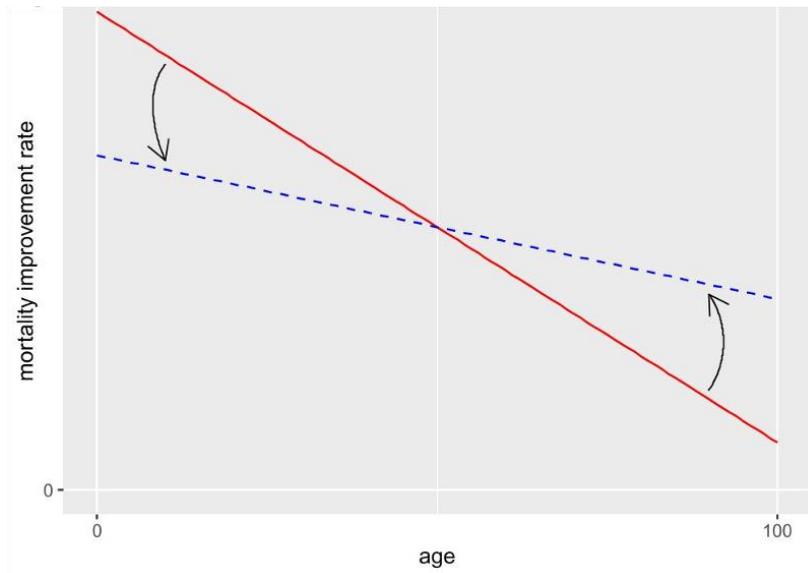
Mortality improvement rates

- Mortality improvement rates (m : mortality rate, x : age, t : year, c : country, g : gender):

$$r_{xt}^{cg} = \ln m_{xt}^{cg} - \ln m_{x,t+1}^{cg}$$

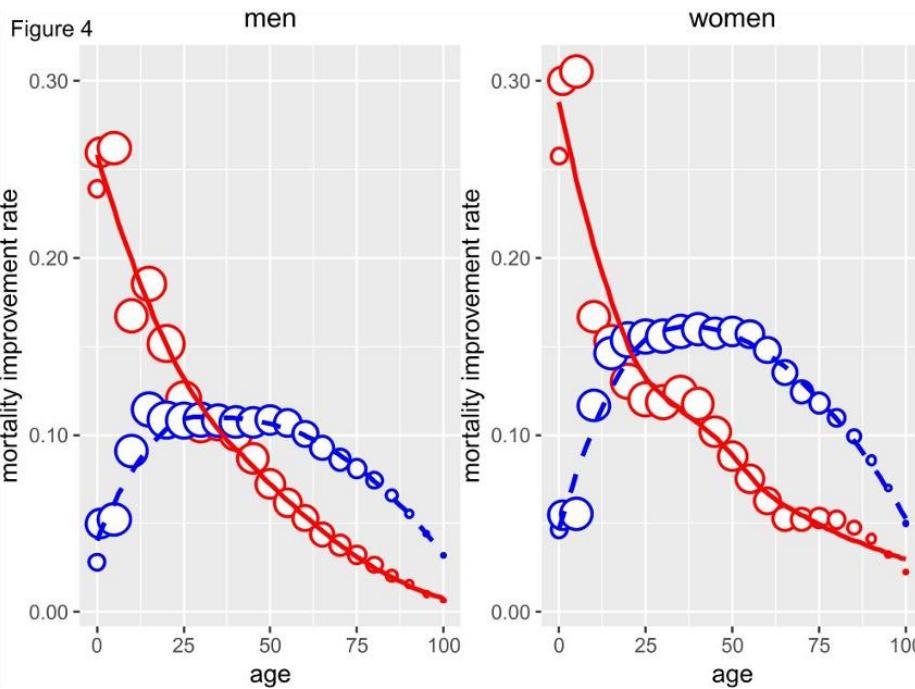
- These depend heavily on all four parameters.
- Higher for infants and children than for seniors.
- Typically decreasing in time for infants and children, and increasing in time for seniors.

Rotation of mortality decline



- Decline tends to slow down in younger ages and speed up in older ages in the long run.
- Li, Lee and Gerland (2013) call this the 'rotation' of the age pattern of mortality decline.
- Observed mostly in developed countries.

Example: Cyprus (1955 and 2015)



Drivers of rotation

- Decline tapering off for infants and children:
 - Little room for improvement in vaccination rates (~100%)
 - Death due to child starvation largely eliminated
 - Premature infant incubators
 - Improved sanitation, access to clean water, better care during pregnancy and childbirth
 - Decrease in infant mortality in Hungary between 1950 and 2020: by factor of 27
- Accelerating decline for seniors:
 - Progress in treating chronic diseases
 - Advancements in surgical techniques and costly medical technology

Rotation in the literature

- Kannisto et al. (1994): accelerating mortality decline in ages 80 to 99 between 1950 and 1989 in 27 countries.
- Horiuchi and Wilmoth (1995): rotation in Sweden.
- Lee and Miller (2001): comparison of average rates of mortality decline by age in 1st and 2nd halves of 20th century.
- Carter and Prskawetz (2001): Lee–Carter models on Austrian data using sliding time windows.
- Rau et al. (2008) and Christensen et al. (2009): acceleration of mortality decline in ages 80+ since 1950 in some countries out of 30.
- Vékás (2020): measure of rotation, evidence for rotation since 1950 in several EU countries.

Practical significance

- Differences between rotated and unrotated forecasts: minor in short run, but huge in long run!
- Ignoring rotation leads to underestimation of old-aged population and overestimation of young-aged population.
- This exacerbates longevity risk in life insurance, pensions and social security.
- For long-term forecasts, assessing rotation is crucial.
- If present, it should be modeled appropriately.

Structure

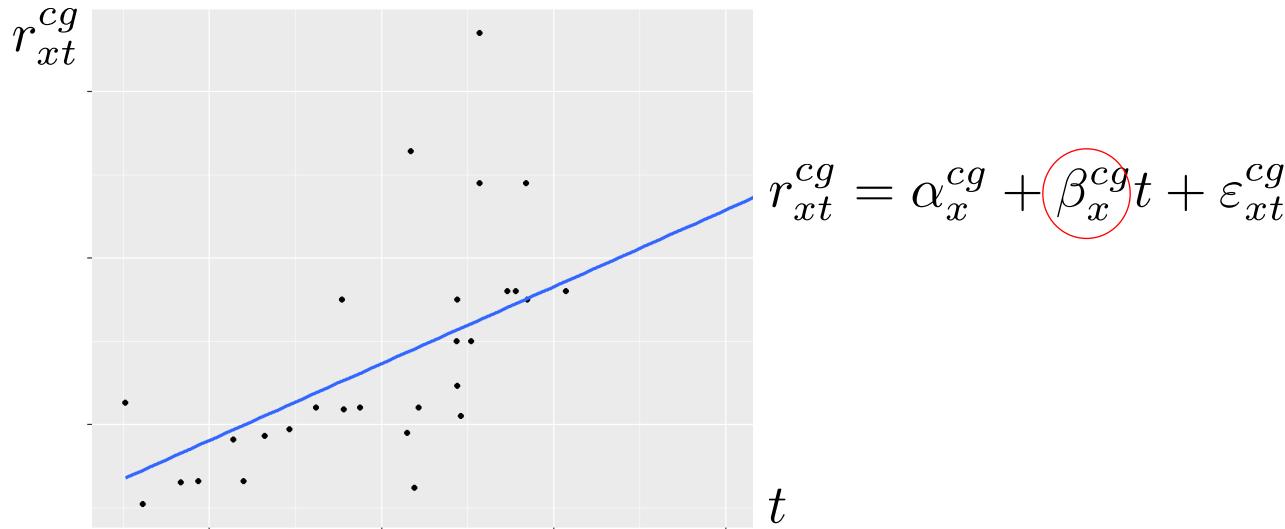
1. Changes in age patterns of mortality decline
2. **Measuring rotation**
3. Modeling rotation

4. Impact of COVID-19 on rotation
5. Impact of COVID-19 on trend and volatility

6. Novel forecasting methods

Measuring rotation (Vékás, 2020)

- Acceleration rate: slope of linear trend of mortality improvement rates



Measuring rotation (Vékás, 2020)

- ρ measure of rotation:

Spearman's ρ rank correlation coefficient between acceleration and age, weighted by population counts

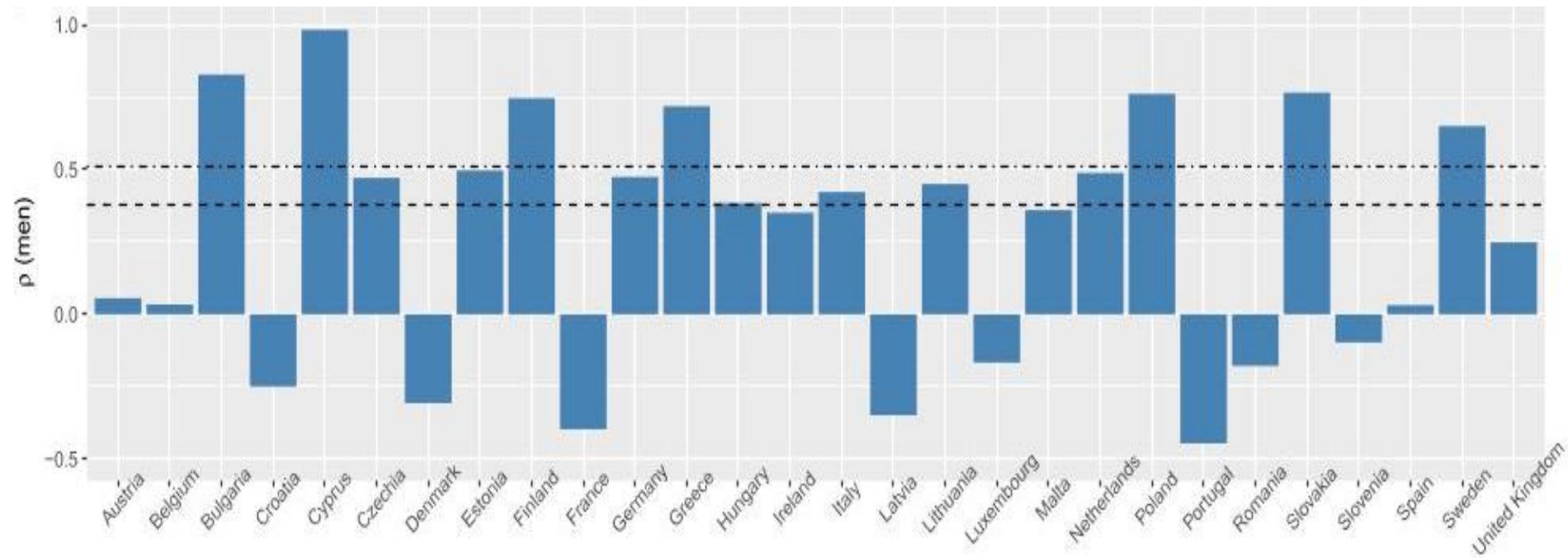
- $\rho = 1$ if and only if acceleration is a strictly increasing function of age
- t test of rotation:

$$H_0: \rho = 0$$

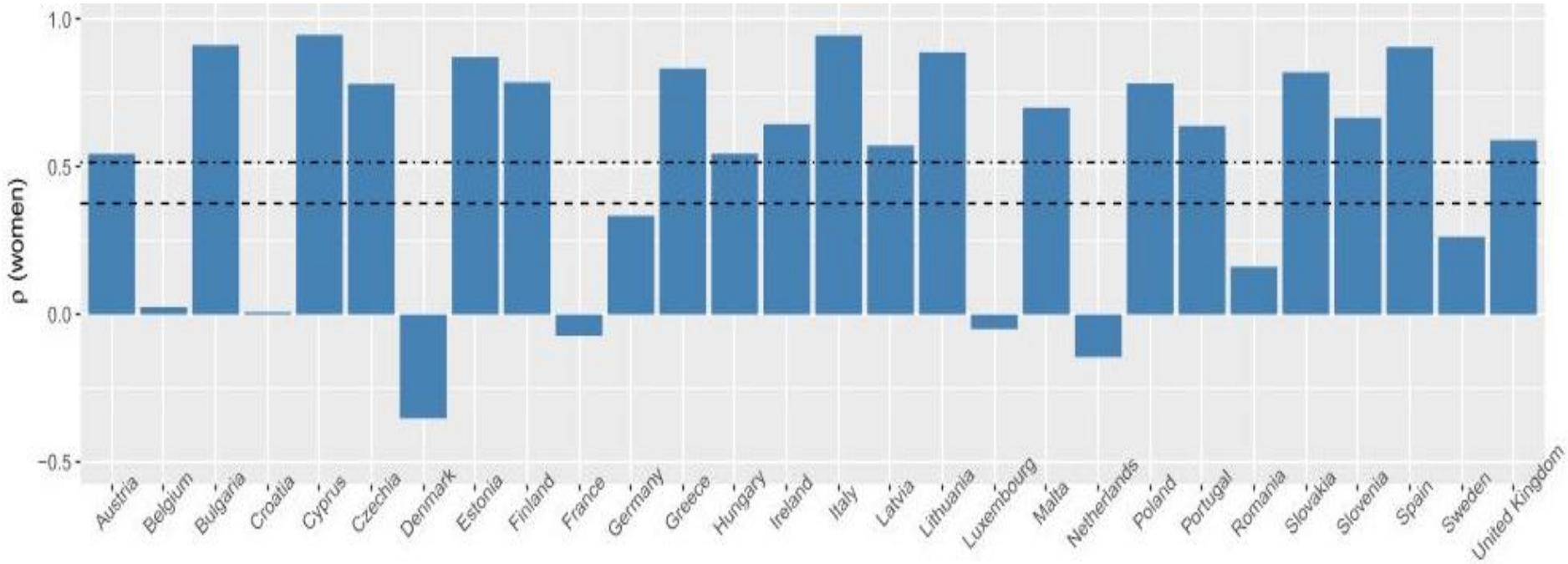
Rotation in EU – Data

- UN World Population Prospects 2017, 28 European Union member states
- Mortality rates, life expectancies at birth and population counts
- 22 age groups
- Separately by gender
- 13 periods (1950–1955 up to 2010–2015)

Rotation in EU – Results (men)



Rotation in EU – Results (women)



Structure

1. Changes in age patterns of mortality decline
2. Measuring rotation
3. **Modeling rotation**

4. Impact of COVID-19 on rotation
5. Impact of COVID-19 on trend and volatility

6. Novel forecasting methods

Lee-Carter model including rotation

- Original Lee-Carter (1992) model:

$$\ln m_{xt} = a_x + b_x k_t + \varepsilon_{xt}$$

- As k_t declines over time, coefficients b_x determine rates of improvement by age. These are independent of time!
- Model variant of Li, Lee and Gerland (2013) including rotation, used by UN in long-term projections:

$$\ln m_{xt} = a_x + B(x, t) k_t + \varepsilon_{xt}$$

- Improvement rates are weighted means of initial (from LC model) and hypothetical limiting values:

$$B(x, t) = (1 - w_s(t))b_0(x) + w_s(t)b_u(x)$$

Lee-Carter model with rotation

- „Raw” weights increase linearly from 0 to 1 after LC period life expectancy at birth reaches a hypothetical threshold until it reaches a hypothetical maximum:

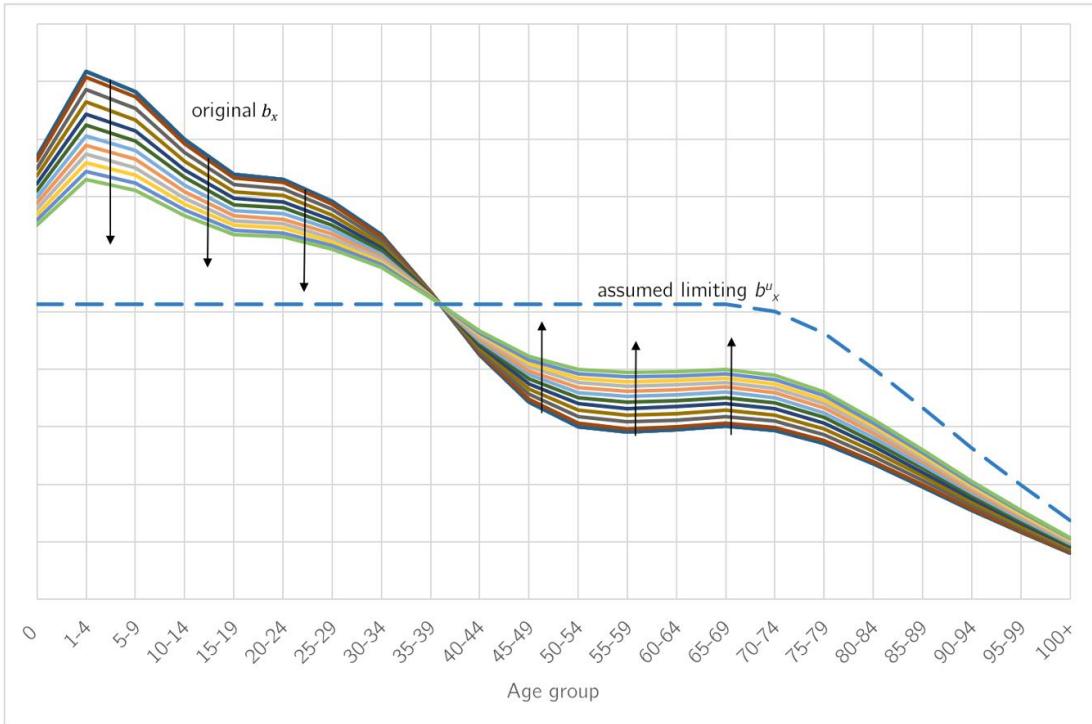
$$w(t) = \frac{e_0(t) - e_0^{start}}{e_0^u - e_0^{start}}$$

- “Smooth” weights computed from “raw” weights (zero if life expectancy at birth is below 80 years), and exponent p governs speed of rotation:

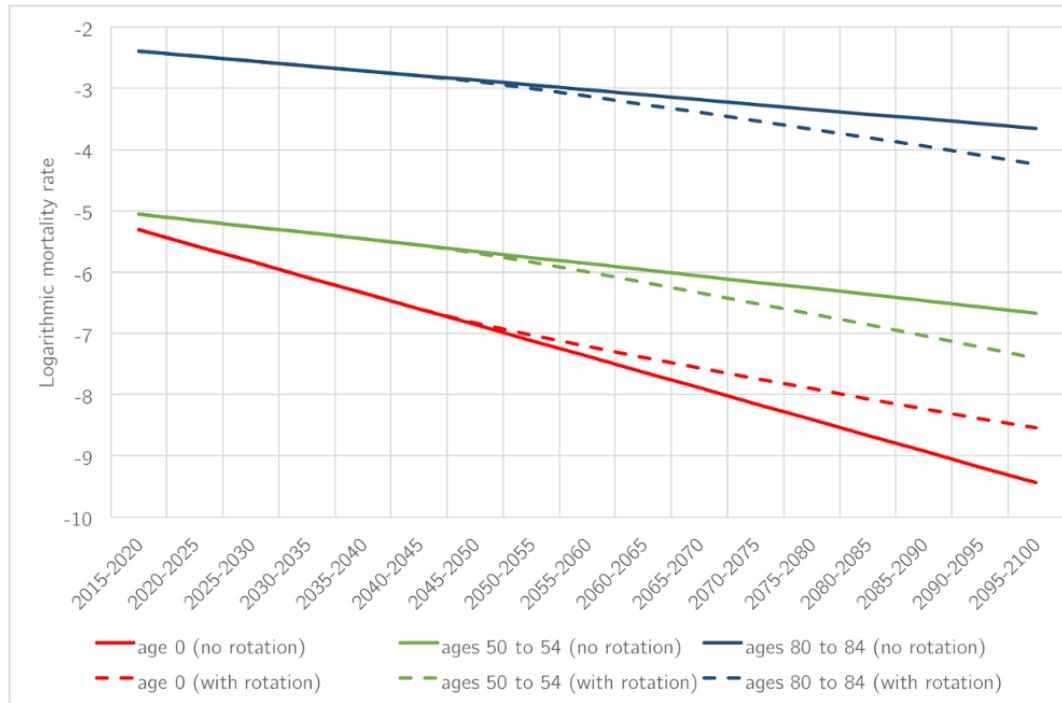
$$w_s(t) = \{0.5 [1 + \sin \left[\frac{\pi}{2} (2w(t) - 1) \right]]\}^p$$

- Two hyperparameters not optimized by authors: they assume threshold $e_0^{start} = 80$ years and exponent $p = 0.5$.

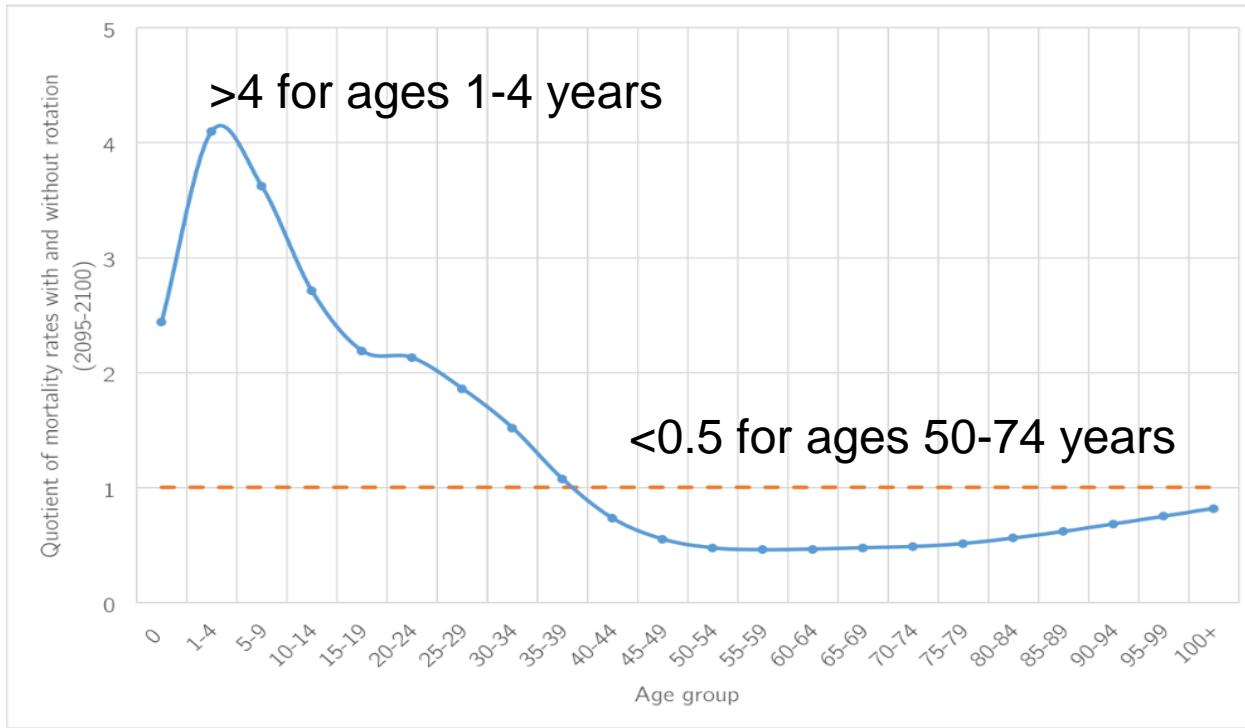
Rotation of $B(x,t)$



Rotated and unrotated forecasts



Rotated/unrotated forecasts in 2100



Structure

1. **Changes in age patterns of mortality decline**
2. Measuring rotation
3. Modeling rotation

4. **Impact of COVID-19 on rotation**
5. Impact of COVID-19 on trend and volatility

6. Novel forecasting methods

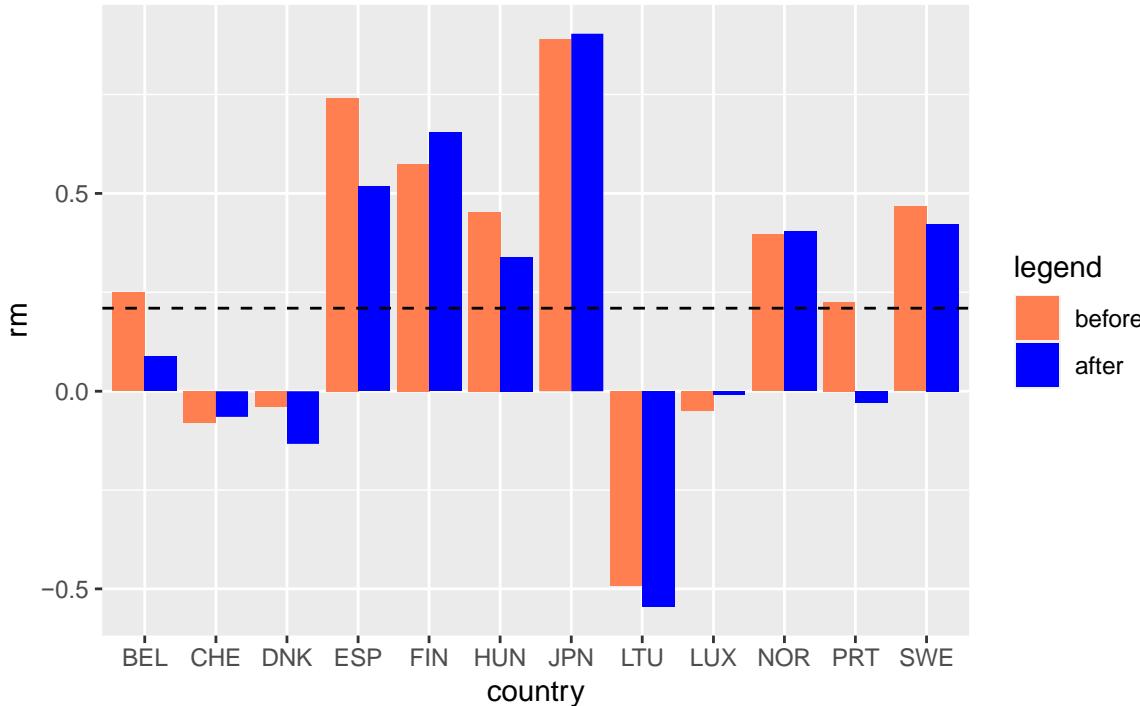
Impact of COVID-19 on rotation

- The pandemic has changed the picture significantly since it emerged in early 2020.
- Seniors were more susceptible to die, which has moderated rotation.
- Impact of COVID-19 assessed by comparing rotation measures including and excluding data from 2020 (and 2021, if available).
- Mortality data still scarce for 2022.

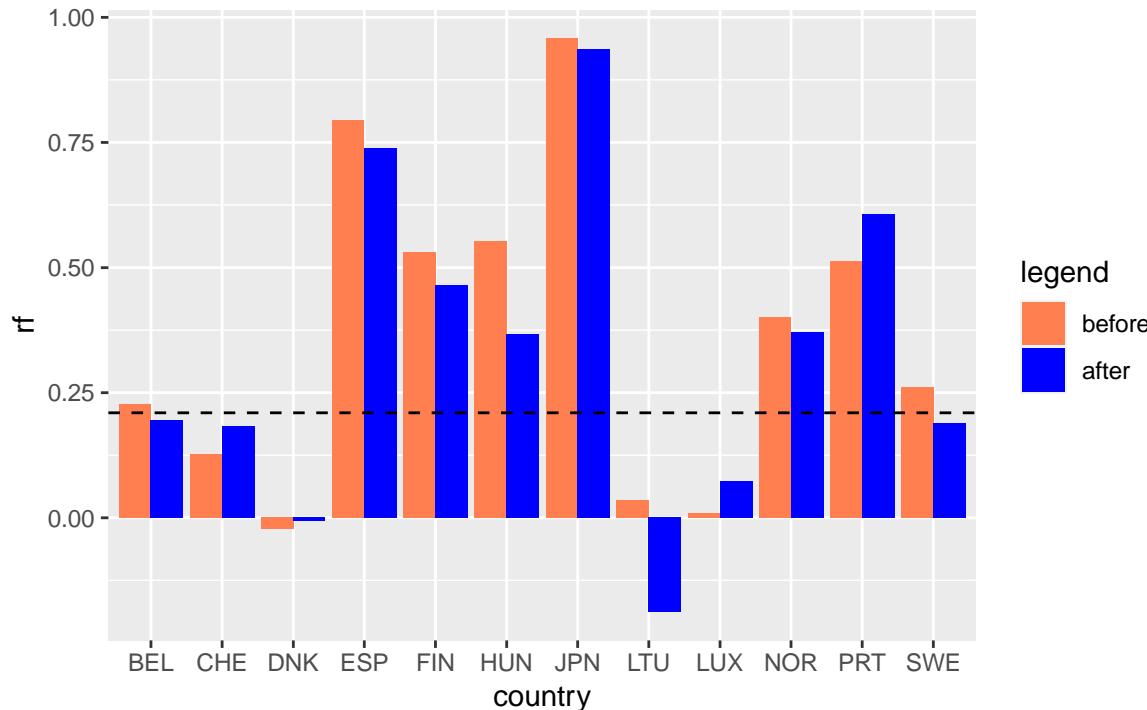
Impact of COVID-19 on rotation – Data

- Human Mortality Database (www.mortality.org)
- Mortality rates and population counts from all 42 countries
- 1x1 data from 1950 up to last available year
- Ages 0 to 100 years
- Separately for males and females

Impact – men



Impact – women



Mean rotation including and excluding 2020

Period	Male	Female	Total
1950 to 2019	0.28	0.37	0.32
1950 to 2020	0.21	0.33	0.27

Rotation has taken a hit

- COVID has decreased rotation for males in 5 out of 8, and for females in 7 out of 8 countries where there had been significant rotation.
- It has completely wiped out trends of 70 years in some countries!
- As seen earlier, rotation strongly impacts long-term forecasts. Even minor changes lead to huge differences in long run!
- Important to be aware of and consider options to model COVID-19.

Structure

1. Changes in age patterns of mortality decline
2. Measuring rotation
3. Modeling rotation

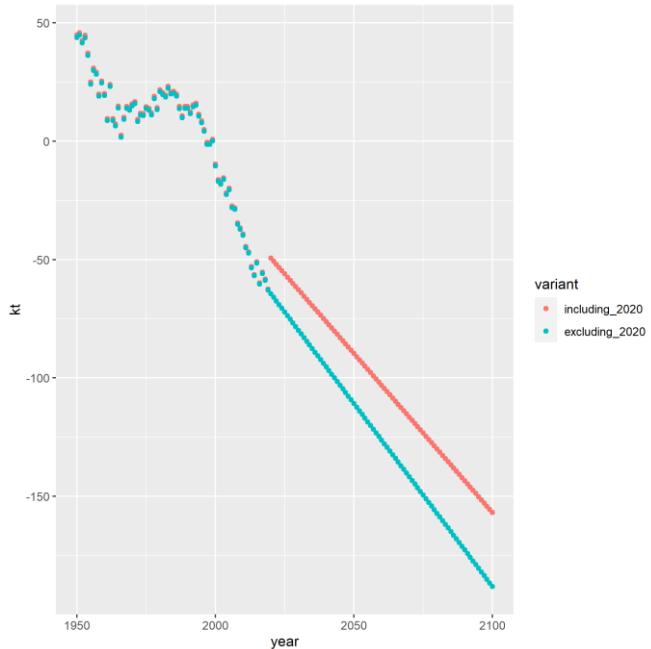
4. Impact of COVID-19 on rotation
5. **Impact of COVID-19 on trend and volatility**

6. Novel forecasting methods

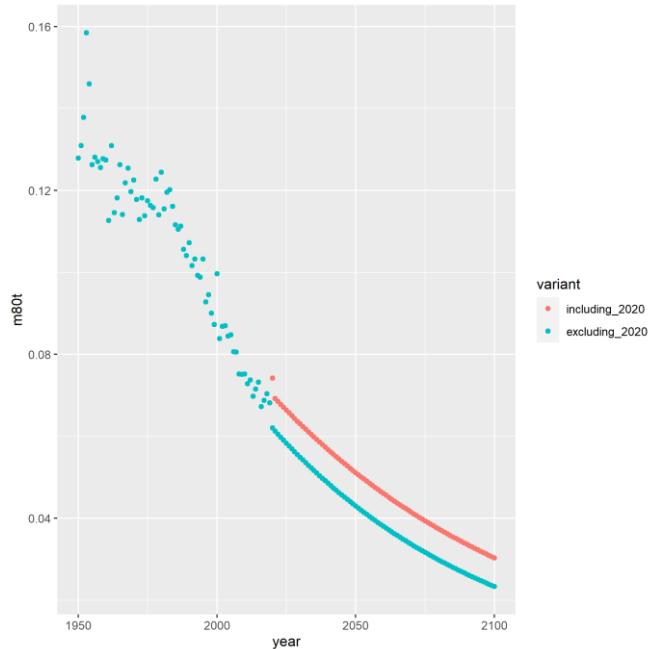
How (not) to incorporate data from COVID years into forecasts?

1. Treat them as outliers
 - Remove them from training data (use years only up to 2019)
 - Add dummy variables representing years of COVID-19 to time series forecasting model: how Lee and Carter (1992) handled Spanish flu
 - Leave them in training data, but remove COVID-19 deaths
2. Treat them as meaningful
 - Leave them as they are
 - Assume (e.g., exponential) decay of shock

Impact of inclusion vs exclusion of 2020 on k_t in Hungary



Impact of inclusion vs exclusion of 2020 on m_{80t} in Hungary



Impact of inclusion vs exclusion of 2020 on mortality

- Death rate of 80-year-olds only **9%** higher in 2020 than in 2019.
- Yet due to cumulative behavior, LC forecasts it to be **30%** higher in 2100 if including COVID year 2020 in training period.
- No data for 2021 yet: joint impact of 2020 and 2021 will be even **much higher!**
- Conclusion: long-term mortality forecasts **extremely sensitive** to how we handle COVID years.
- Pricing of products affected by mortality risk **extremely sensitive** to how we handle COVID years.

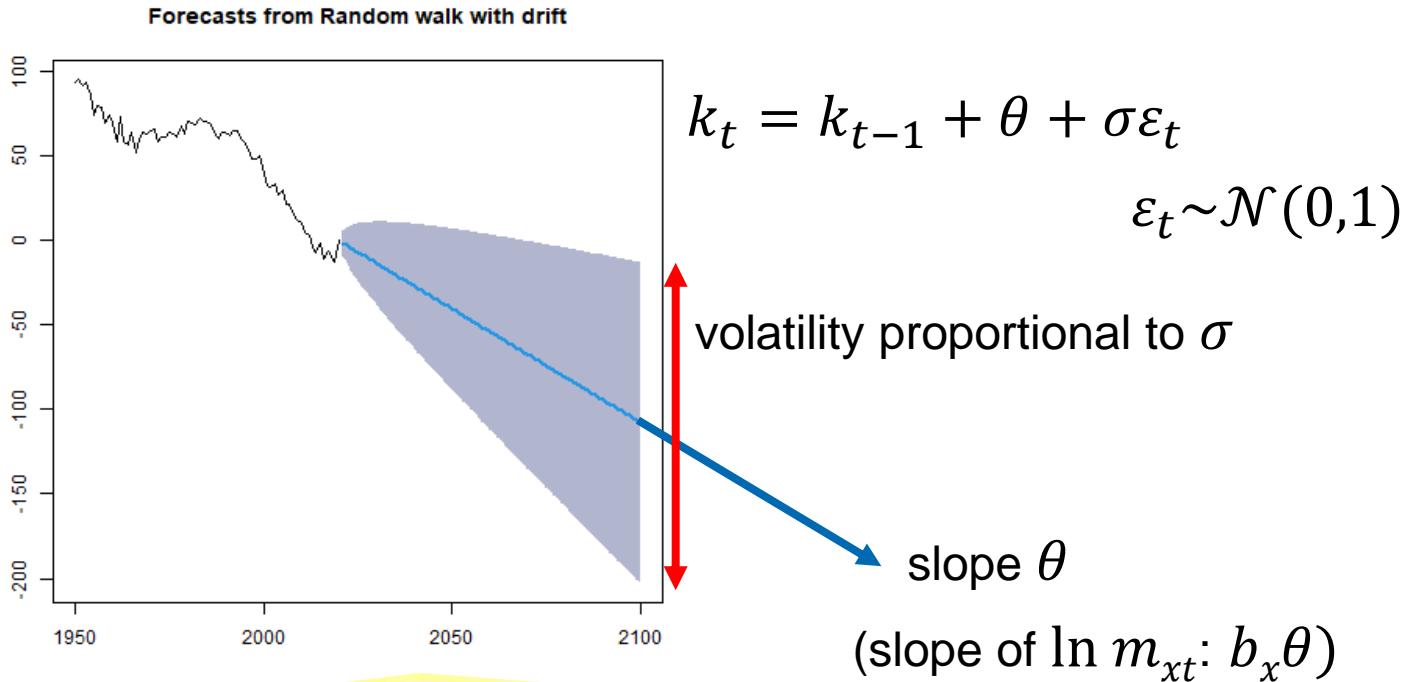
Impact of inclusion vs exclusion of 2020 on longevity

- Cohort life expectancy at age 65 is 18.4 years if excluding and 17.5 years if including 2020 in training data.
- Difference: **0.9 years, or 5%.**
- No data for 2021 yet: joint impact of 2020 and 2021 will be **much higher!**
- Conclusion: Pricing of products affected by longevity risk **fairly sensitive** to how we treat COVID years.

How (not) to incorporate data from COVID years into forecasts?

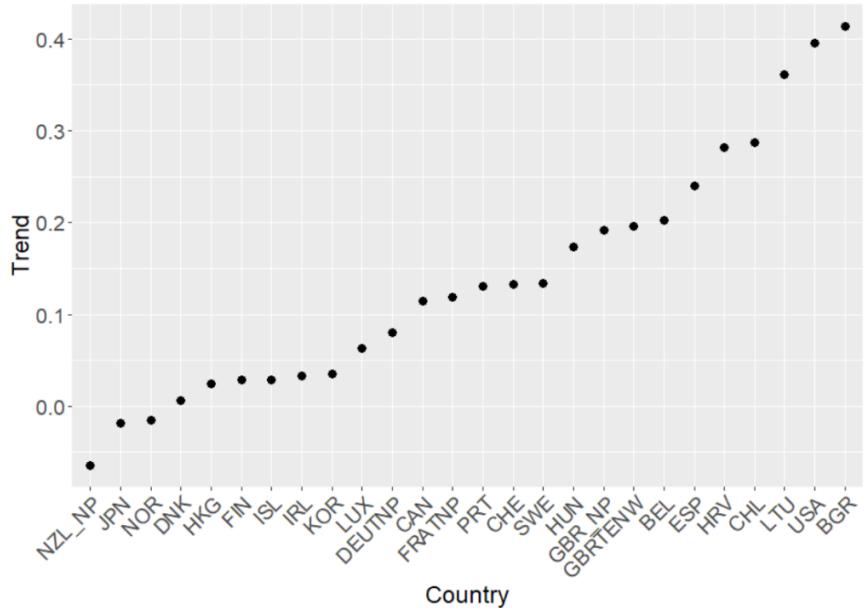
- Removing COVID years: more prudent for annuities and pensions.
- Including them: more prudent for term life and endowment products.
- Milliman White Paper (September 2023): Impact of COVID-19 on best estimate mortality assumptions
 - Replacing 2020 mortality by average of previous N years
 - Jump process in model of k_t (Chen and Cox, 2009)
 - Subjective weighting of years (UK CMI: 2020/21: 0%, 2022: 25%).

Slope and volatility of forecasts



Impact of excluding 2020 on slope by country

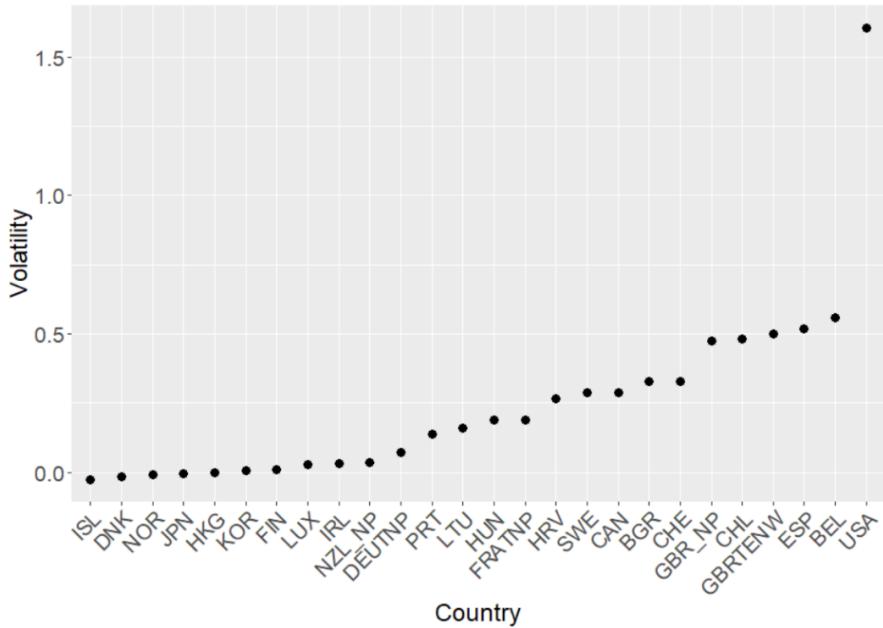
FIGURE 4: TREND RELATIVE DIFFERENCES BETWEEN THE TWO STEPS



Source: Auter et al. (2023). Milliman White Paper.

Impact of excluding 2020 on volatility by country

FIGURE 5: VOLATILITY RELATIVE DIFFERENCES BETWEEN THE TWO STEPS



Source: Auter et al. (2023). Milliman White Paper.

How (not) to incorporate data from COVID years into forecasts?

- Trend and volatility most affected by excluding 2020 in countries with high deaths tolls.
- Unexplored long-term impact:
 - Mutations,
 - Long COVID.
- Epidemiologists can hopefully keep providing updated assumptions.

Structure

1. Changes in age patterns of mortality decline
2. Measuring rotation
3. Modeling rotation

4. Impact of COVID-19 on rotation
5. Impact of COVID-19 on trend and volatility

6. **Novel forecasting methods (ongoing joint work with László Kovács and Ronald Richman)**

Applications of AI in actuarial work

- Mortality forecasting
- Reserve calculations
- Lapse models
- Non-life premium calculation
- Fraud detection
- Underwriting
- etc.

AI for mortality forecasting

- Recurrent neural networks (Richman and Wüthrich, 2019)
- Feedforward neural networks for multiple populations (Richman and Wüthrich, 2021)
- Lee–Carter + Long-Short Term Memory networks (Nigri et al., 2019)
- Bootstrap confidence intervals for LC-LSTM (Marino, Levantesi and Nigri, 2021)
- Convolutional neural networks (Perla et al., 2021, Schnürch and Korn, 2022)
- Tree-based models (Levantesi and Pizzorusso, 2019, Levantesi and Nigri, 2020)
- etc.

AI methods to capture long-term rotation

- Kovács, L., Richman, R. and Vékás, P.: AI in Longevity Risk Management – Improved Long-Term Forecasts by Machine Learning (coming soon).
- Sponsored by AFIR-ERM section of IAA.
- Four methods proposed:
 - Hyperparameter tuning of LC model including rotation,
 - Generalized additive model on LC residuals,
 - Deep feedforward neural network,
 - Stacking ensemble of previous three.

Demographic data

- Data from Human Mortality Database (HMD) for 38 countries for 1950-2018
- Training, validation and test periods:
 - Train: 1950-1990
 - Validation: 1990-1999
 - Test: 2000-2018
- Models fit in two rounds:
 - Fit on Train and test on Validation – hyperparameter tuning
 - Fit best models on Train + Validation and test on Test
– measuring out-of-sample performance

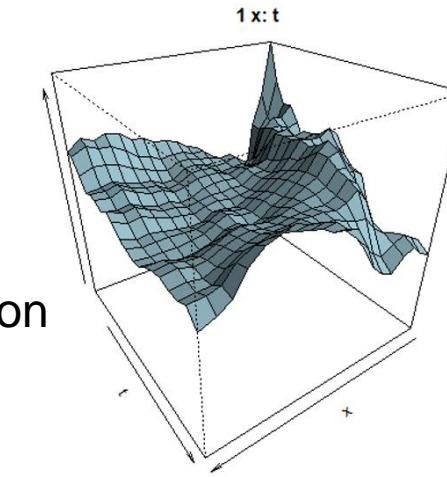
Hyperparameter tuning of rotated LC model



GAM on LC residuals

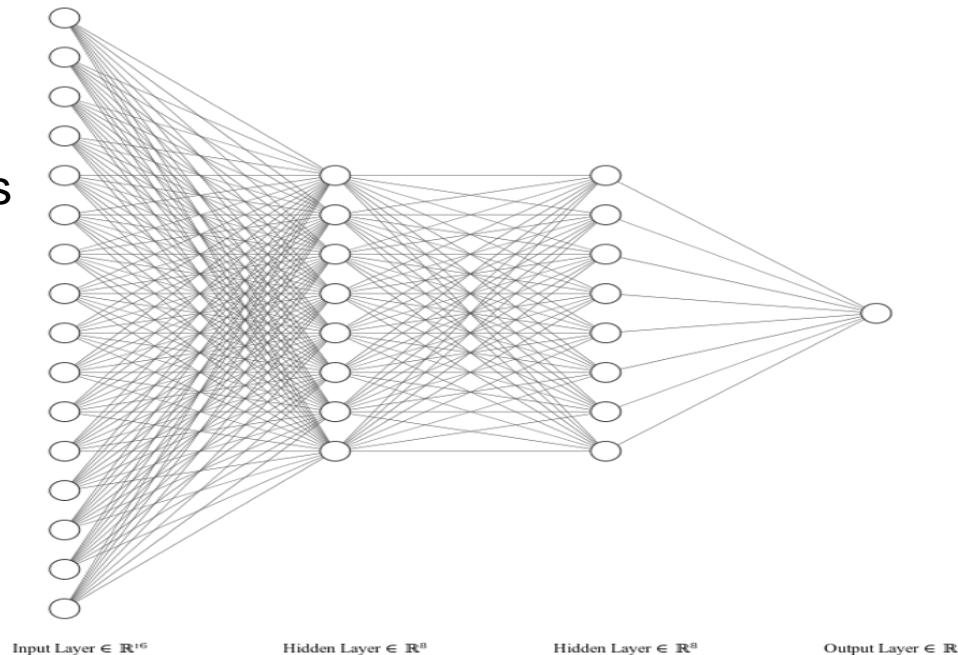
- LC residuals are not IID if there is rotation.
- We can extract meaningful information from them by fitting bivariate spline functions (piecewise polynomials) of x and t to them.
- Hyperparameters: number of knots of splines, and spline fitting method (several available in *mgcv* package of R).

$h(x, t)$ fitted on
Spanish female population

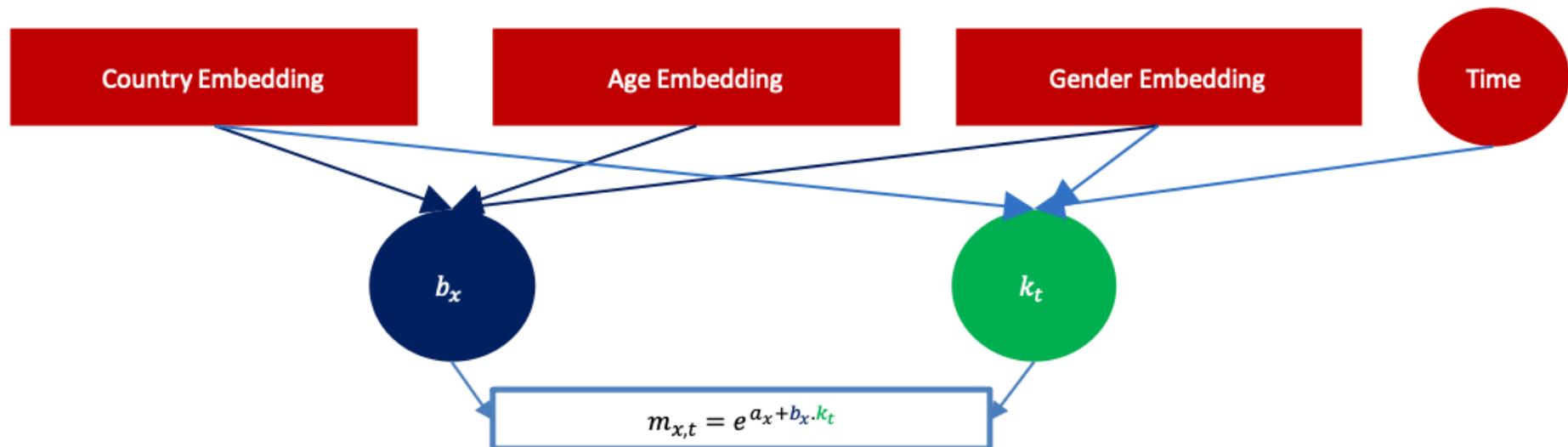


Deep feedforward network

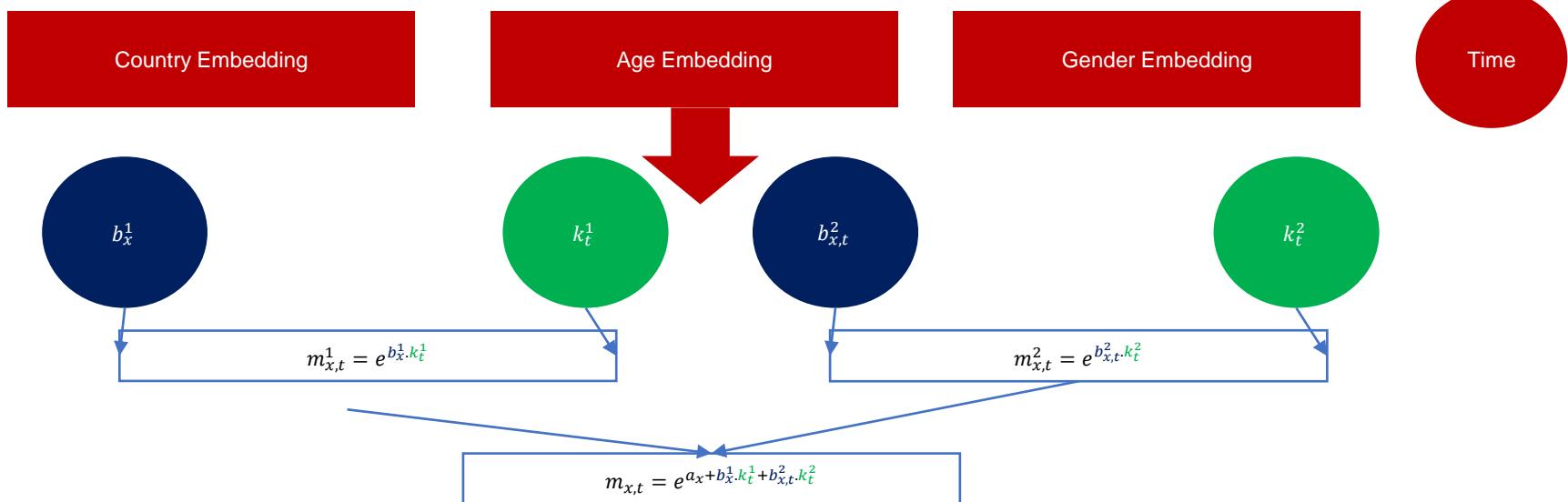
- Inputs: country, gender, age embeddings, and year (numeric)
- Outputs: parameters of LC model (hypernetwork: outputs parameters of another model)
- Boosting: adding second network that captures rotation



Basic LC network



Boosted LC network



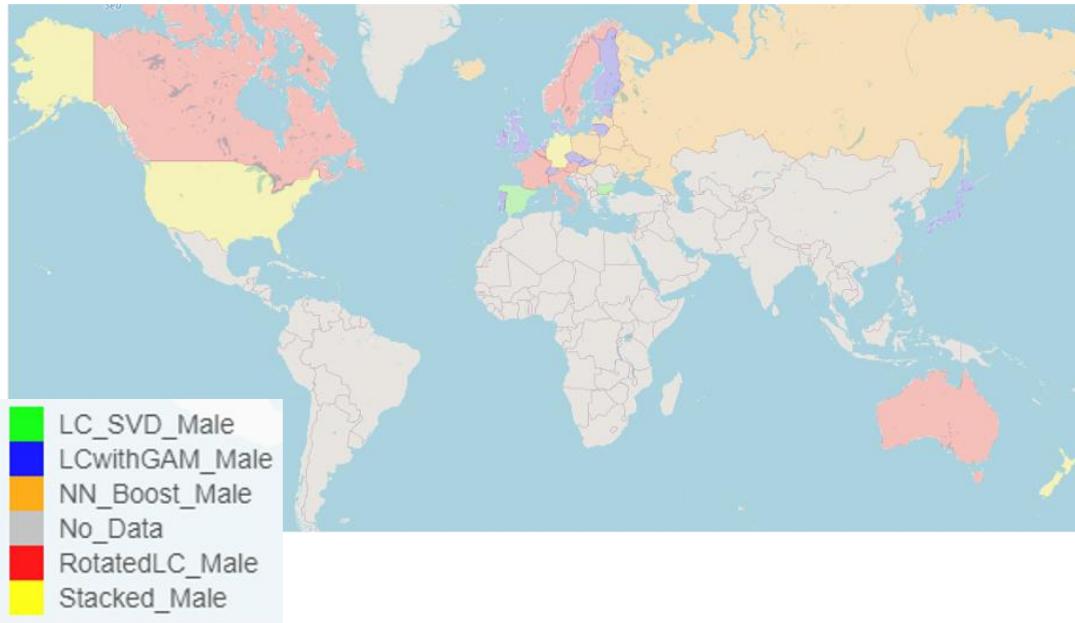
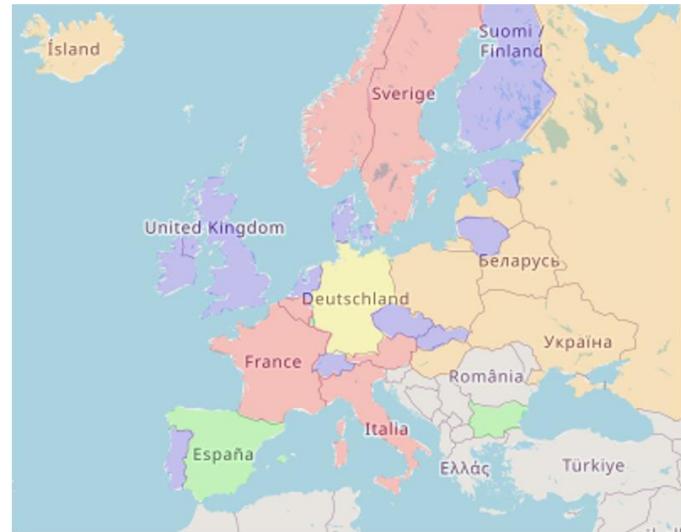
Stacking

- Simple unweighted average of predictions of other three models (robust ensemble, Jose and Winkler, 2008).

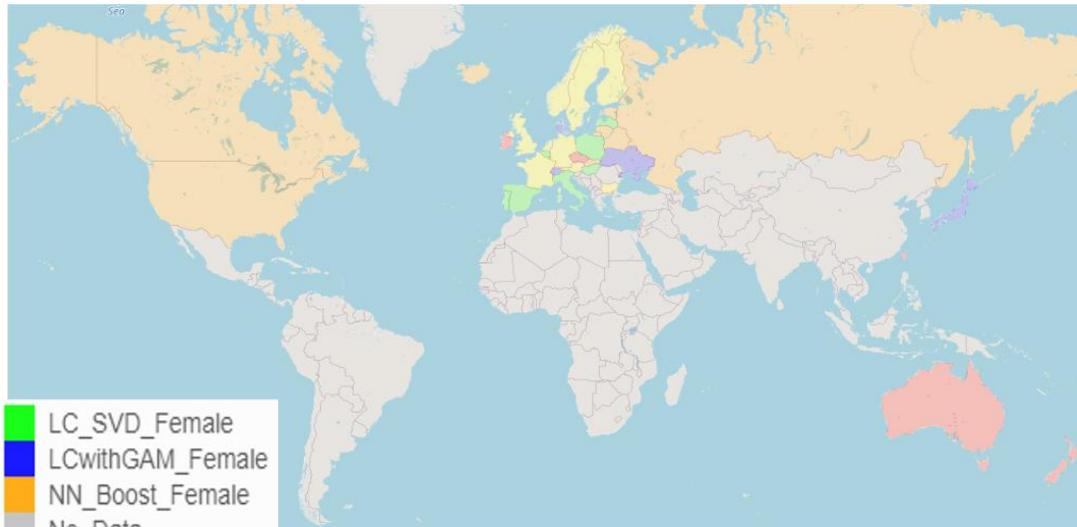
Number of wins by method and gender

Method	Female	Male	Total
Vanilla LC	7	3	10
Rotated LC	7	9	16
LC-GAM	4	14	18
LC-ANN (boosted)	9	7	16
Stacking	11	5	16
Total	38	38	76

Best models for males



Best models for females



Takeaways

- Mortality improvement shifting from younger to older ages (rotation).
- This significantly affects long-term forecasts and increases longevity risk.
- Lee–Carter ignores this and can thus be very inaccurate in long run.
- Rotation should be assessed before picking a forecasting method.
- COVID-19 makes long-term forecasts go haywire (age pattern of decline, slope and volatility!).
- Several ways to (or not to) incorporate it into forecasts.
- New AI methods capturing rotation can greatly outperform LC.
- Various techniques work best for different countries.

Thank you for your attention!

References

- Auter, F., Elfassihi, A., El Khababi, S., Thiemen Postema, J., Titon, E.E., van Es, R. (2023): *Impact of COVID-19 on best estimate mortality assumptions*. Milliman White Paper. https://www.milliman.com/-/media/milliman/pdfs/2023-articles/9-8-23_impact-of-covid-19-on-best-estimate-mortality-assumptions_20230907.ashx
- Carter, L.R. and Prskawetz, A. (2001). *Examining structural shifts in mortality using the Lee-Carter method* (working paper). Max Planck Institute for Demographic Research. <https://www.demogr.mpg.de/Papers/Working/wp-2001-007.pdf>
- Christensen, K., Doblhammer, G., Rau, R. and Vaupel, J.W. (2009). Ageing populations: the challenges ahead. *Lancet* 374(9696):1196–1208. [https://doi.org/10.1016/S0140-6736\(09\)61460-4](https://doi.org/10.1016/S0140-6736(09)61460-4)

References

- Horiuchi, S. and Wilmoth, J.R. (1995). *The aging of mortality decline*. In: *Annual Meeting of the Population Association of America*, San Francisco, CA.
- Jose, V.R.R. and Winkler, R.L. (2008). Simple robust averages of forecasts: some empirical results. *International Journal of Forecasting*, 24(1), pp.163-169. <https://doi.org/10.1016/j.ijforecast.2007.06.001>
- Kannisto, V., Lauritsen, J., Thatcher, A.R. and Vaupel, J.W. (1994). Reductions in mortality at advanced ages: several decades of evidence from 27 countries. *Population Development Review* 20(4):793–810. <https://doi.org/10.2307/2137662>
- Lee, R.D. and Carter, L.R. (1992). Modeling and forecasting US mortality. *Journal of the American Statistical Association* 87:659–671. <https://doi.org/10.2307/2290201>

References

- Lee, R. and Miller, T. (2001). Evaluating the performance of the Lee–Carter method for forecasting mortality. *Demography* 38(4):537–549. <https://doi.org/10.1353/dem.2001.0036>
- Levantesi, S., and Nigri, A. (2020). A random forest algorithm to improve the Lee–Carter mortality forecasting: impact on q-forward. *Soft Computing* Vol. 24. Issue 12. pp. 8553–8567. <https://doi.org/10.1007/s00500-019-04427-z>
- Levantesi, S. and Pizzorusso, V. (2019). Application of machine learning to mortality modeling and forecasting. *Risks* Vol. 7. No. 1.: 26. <https://doi.org/10.3390/risks7010026>

References

- Li, N., Lee, R. and Gerland, P. (2013). Extending the Lee–Carter method to model the rotation of age patterns of mortality-decline for long-term projection. *Demography* 50(6):2037–2051. <https://doi.org/10.1007/s13524-013-0232-2>
- Marino, M., Nigri, A. and Levantesi, S. (2021). *Deepening Lee–Carter for longevity projections with uncertainty estimation*. arXiv. arXiv:2103.10535. <https://doi.org/10.48550/arXiv.2103.10535>
- Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S. and Perla, F. (2019). A Deep Learning Integrated Lee–Carter Model. *Risks* Vol. 7. No. 1.: 33. <https://doi.org/10.3390/risks7010033>

References

- Perla, F., Richman, R., Scognamiglio, S. and Wüthrich, M. V. (2021). Time-series forecasting of mortality rates using deep learning. *Scandinavian Actuarial Journal* Vol. 2021. No. 7. pp. 572–598. <https://doi.org/10.1080/03461238.2020.1867232>
- Rau, R., Soroko, E., Jasilionis, D. and Vaupel, J.W. (2008). Continued reductions in mortality at advanced ages. *Population Development Review* 34:747–68. <https://doi.org/10.1111/j.1728-4457.2008.00249.x>
- Richman, R. and Wüthrich, M.V. (2019). Lee and Carter go Machine Learning: Recurrent Neural Networks. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.3441030>
- Richman, R. and Wüthrich, M.V. (2021). A neural network extension of the Lee–Carter model to multiple populations. *Annals of Actuarial Science* Vol. 15. No. 2. pp. 346–366. <https://doi.org/10.1017/S1748499519000071>

References

- Schnürch, S. and Korn, R. (2022): Point and interval forecasts of death rates using neural networks. *ASTIN Bulletin* Vol. 52. No. 1. pp. 333–360. <https://doi.org/10.1017/asb.2021.34>
- Vékás, P. (2020). Rotation of the age pattern of mortality improvements in the European Union. *Central European Journal of Operations Research*, 28: pp. 1031–1048. <https://doi.org/10.1007/s10100-019-00617-0>
- Wood, S. N. (2017). *Generalized Additive Models: An Introduction with R* (2nd edition). Chapman and Hall/CRC.