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Motivation and context
• Actuaries have huge data sets, especially in motor third party liability (MTPL) insurance

• Insurers use generalized linear models (GLMs) due to interpretability of these models and companies’ IT legacy

• GLMs are improved by actuaries via sophisticated choice of significant variables and their interactions

• Search for strong interactions is more time-consuming, is mostly visual and depends much on expert judgement

• Example: for 20 variables ≈ 200 pairwise interactions, for 50 variables ≈ 1200 pairwise interactions

• A recommendation engine for the next-best interaction missing in a GLM may save actuaries hours/days

• Why next-best? GLMs for tariffs cannot be drastically changed/replaced but should be adjusted gradually

• For automatic tree-based construction of a GLM from scratch, see, e.g., Henckaerts et al. (2022)
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Problem setting and business requirements
• Given:

− the predictions of a benchmark GLM (e.g., claim counts)

− training data (e.g., driver’s age, profession, car brand, postcode)

• Find:

− Next-best pairwise interaction missing in the benchmark GLM (e.g., interaction between postcode and bonus malus)

• Subject to business requirements:

1 Avoid retraining the benchmark GLM, use only its predictions

2 “Next-best” means in terms of key performance indicators (KPIs) that actuaries rely on, e.g., lift plots

3 Minimize the need for visual evaluation of KPIs
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Notation
• D = {(Ni ,xxx i , vi)}n

i=1 – data set, where

− n ∈ N is the number of observations

− vi ∈ [0, 1] corresponds to the exposure time in years for the i-th observation

− Ni ∈ N ∪ {0} is the number of claims observed for the i-th observation within exposure time vi

− xxx i ∈ X ⊂ {1} × Rp represents the vector of covariates for the i-th observation excluding vi

− p ∈ N is the number of covariates

• x·,j denotes covariate j = 1, . . . , p
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Poisson GLM
• Poisson GLM with the canonical link assumes

Ni ∼ Poisson(vi exp(η(βββ,xxx i)),

where η(βββ,xxx i) = βββTxxx i – the linear component and β is the vector of the GLM parameters

• Denote by λ̂GLM
i := exp(η(β̂ββ,xxx i) the annualized claim frequency predicted by a GLM

• An interaction is a term I(xi,1, xi,2) added to the component η(βββ,xxx i) such that I(xi,1, xi,2) is not additively separable, e.g.:

− for numerical x·,1, x·,2 we can have:
I(xi,1, xi,2) = β1,2 · xi,1 · xi,2

− for numerical x·,1 and categorical x·,2 with J ∈ N categories and J as a reference category:

I(xi,1, xi,2) =
J−1∑
j=1

βj · xi,1 · 1{xi,2=j}

− for categorical x·,1 with J ∈ N categories and categorical x·,2 with K ∈ N categories:

I(xi,1, xi,2) =
J−1∑
j=1

K−1∑
k=1

βj,k · 1{xi,1=j} · 1{xi,2=k}
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Popular existing approaches and our contribution
• Approach known from practitioners:

− train a Gradient Boosting Machine (GBM) with trees of depth 2 and benchmark GLM predictions as offset

− compute Friedman’s H-statistic (Friedman and Popescu (2008)) for each pair of features

• Approach in Wüthrich (2020):

− train a Combined Actuarial Neural Network (CANN) for each pair of features

− for each CANN, compute the decrease of loss function in comparison to benchmark GLM

• Our contribution:

1 our approach is computationally faster, especially for data sets with many variables

2 we address the question of automating the “best” functional form of the interaction
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Overview of our approach
• Algorithm:

1 Train Combined Actuarial Neural Network (CANN) using all variables

2 Calculate strength of all pairwise interactions via Neural Interaction Detection (NID), sort from strongest to weakest

3 Train mini-GLMs for top ranked interaction(s), identify the best mini-GLM, recommend the corresponding interaction

• Motivation for each component:

1 CANN captures well non-linear interactions missing in an actuarial model and allows for embedding layers

2 NID is fast, does not rely on partial dependence plots or data reshuffling, easy to implement

3 mini-GLMs help identify next-best interaction among top-ranked interations and its “optimal” functional form
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Algorithm Step 1: CANN

Figure: Figure taken from Havrylenko and Heger (2023)

• CANN was proposed in Wüthrich and Merz (2019)
• Two parts: GLM (non-trainable), NN (trainable)
• W (l) weight matrix, bbb(l) bias vector for hidden layer

l = 1, . . . , d , where d ∈ N is number of hidden layers
• wwwy coefficient vector, by bias for output neuron
• ϕl(·) activation function of neurons in layer l , ϕd+1(z) = z
• Vector of activation values in hidden layers (HLs):

zzz(l) =
−→
ϕl

(
W (l)zzz(l−1) + bbb(l)

)
, l = 1, . . . , d ,

ql ∈ N, zzz(0) := x̃xx input features
• Assumptions of a Poisson CANN:

− Ni ∼ Poisson(vi · λCANN(x̃xx i))

− wwwy = (0, 0, . . . , 0)⊤ ∈ Rqd , by = 0 at initialization
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Algorithm Step 2: NID

Figure: Figure taken from Havrylenko and Heger (2023)

• NID proposed in Tsang et al. (2018) for NN and num. ftrs.
• We modify NID to CANN and categorical variables
• Assumption: interactions are captured in the 1-st HL
• Interaction strength between input neurons in I measured

at j-th neuron in 1-st HL:

sj(I) = min(|W (1)
j,I |) · ζ

(1)
j , sj(I) ∈ R

• |W (1)
j,I | absolute value of incoming weights from input

neurons in I to j-th neuron in 1-st HL
• Influence of j-th neuron in 1-st HL is j-th element of

ζζζ(1) = |wwwy |⊤ · |W (d)| · |W (d−1)| · ... · |W (2)|, ζζζ(1) ∈ Rq1

• Total interaction strength score for input neurons in I

s(I) =
q1∑

j=1

sj(I) =
q1∑

j=1

min(|W (1)
j,I |) · ζ

(1)
j
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Algorithm Step 3: mini-GLMs and recommendation
• One cannot blindly recommend the interaction first-ranked by NID:

1 a categorical variable in the interaction may require clustering of its categories (e.g., postcode, car brand)

2 another top-ranked interaction may have a very similar NID score

3 the functional form of the interaction for a GLM is not known in general

• Point 1: Cluster num. representations of cat. variables that appear in top-ranked interaction(s) and have many categories

• Points 2 and 3 are dealt as follows:

1 Fit “mini-GLMs” for top-ranked pair(s) of interacting variables with different I(x·,j , x·,k), bench. GLM prediction is an offset:

Ni ∼ Poisson
(

vi · λ̂GLM
i · exp(I(xi,j , xi,k))

)
2 Recommend the interaction that corresponds to mini-GLM with the best performance on relevant KPIs
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Case study 1: artificial data and algorithm step 1
• Artificially generated D with (xi,1, . . . , xi,8) ∼ N(0, Σ), where Σ is identity matrix except Σ2,8 = Σ8,2 = 0.5,

xi,9 ∼ Binomial(2, 0.3), xi,10 ∼ Binomial(5, 0.2), vi = 1:

xxx i ∈ R10 7→ η(xxx i) =− 3 + 0.5 · xi,1 − 0.25 · x2
i,2 + 0.5 · |xi,3| · sin(2 · xi,3) + 0.5 · xi,4 · xi,5

+ 0.125 · x2
i,5 · xi,6 − 0.1 · 1{xi,9=1} − 0.2 · 1{xi,9=2} + 0.1 · 1{xi,10=1}

+ 0.2 · 1{xi,10=2} + 0.3 · 1{xi,10=3} + 0.4 · 1{xi,10=4} + 0.5 · 1{xi,10=5}.

Ni ∼ Poisson(exp(η(xxx i))), i = 1, . . . , 2 · 106

• η(xxx i) is taken from Richman and Wüthrich (2023) and modified such that the portfolio distribution looks realistic

• λGLM(xxx i) with all main effects, but no interactions

• In step 1, a CANN with 3 HLs is trained using:

− pre-processed variables (min-max scaling for numerical, one-hot encoding for x·,9 and 2-dim. embedding for x·,10)

− fine-tuning of activation functions and the number of neurons in each HL
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Case study 1: algorithm step 2
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Case study 1: algorithm step 3
• Since the functional form of I(x·,4, x·,5) is not known for non-categorical variables, one can:

− categorize x·,4 → xc
·,4 as well as x·,5 → xc

·,5 and recommend I(xc
·,4, x

c
·,5) =

∑J−1
j=1

∑K−1
k=1 βj,k · 1{xc

i,4=j} · 1{xc
i,5=k} or

− train mini-GLMs with various “reasonable” I(x·,4, x·,5) (from a selection of elementary functions or inferred from data
visualization) and identify the best-performing one

• In our example, mini-GLM with I(x·,4, x·,5) = β4,5 · x·,5 · x·,5 has the best KPIs, so this I(·, ·) is recommended for bench. GLM

• When I(x·,4, x·,5) = β4,5 · x·,4 · x·,5 is added to the benchmark GLM, out-of-sample Poisson deviance ↓ from 0.3314 to 0.3134

• Repeating steps 1 & 2 for updated GLM ranks (x·,5, x·,6) as (by far) 1-st ranked

• In step 3, mini-GLMs with I(x·,5, x·,6) = β5,6 · xa
·,5 · xb

·,6 for a ∈ {1, 2, 3} and b ∈ {1, 2, 3} are trained and KPIs are evaluated

• I(x·,5, x·,6) = β5,6 · x2
·,5 · x·,6 is recommended for the benchmark GLM
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Case studies with open-source data and big proprietary data
• freMTPL2freq data set with ≈ 680000 observations, 9 variables, so 36 potential pairwise interactions:

− Alg. step 1 takes 90 sec. for 1 CANN (comparable for 1 GBM)

− Alg. step 2 takes < 1 sec., whereas the computation of Friedman’s H-statistics takes 5 minutes

− Alg. step 3 recommends I(VehAge,BonusMalus) or I(VehAge,VehGas), depending on KPI for mini-GLM

− Both interactions are among top ones as per GBM + Friedman’s H-statistic

− Schelldorfer and Wüthrich (2019) does not have I(VehAge,VehGas) in the list of detected interactions

• Confidential data with ≈ 11 mln. observations, ≈ 50 variables, so ≈ 1225 potential pairwise interactions:

− Alg. step 2 takes < 3 sec., whereas calculating Friedman’s H-statistics is too costly even for 5% of data

− Dimensionality reduction of large cat. variables like postcode or carBrand is also beneficial for actuaries
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Summary and conclusions
• Detection of interactions missing in GLMs can be very time-consuming

• We contribute to the academic literature on the detection of interacting variables for GLMs by

− proposing an interaction-detection methodology that is signif. faster than alernatives and has a comparable quality

− pioneering the usage of NID in actuarial science

− modifying NID to CANNs and categorical variables

• Advantages of proposed methodology:

− almost fully automatable with little to no need for actuarial intervention

− faster than other approaches ⇒ especially suitable for big data

− represents large categorical variables as low-dimensional num. vectors

• Research outlook: analyze robustness of the algorithm, improve automation of Step 3
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I thank you for your attention...

... and look forward to your questions!

(a) QR code to Havrylenko and Heger (2023) (b) QR code to https://war.ukraine.ua/support-ukraine/
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NID vs Friedman’s H-statistic
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