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About the speaker

= Rapior Hugo — TCP Consultant, Detralytics
Hugo is part of the TCP program at Detralytics, and works on R&D topics,
P&C pricing, modelling and more especially on cyber.

Detralytics is a consulting and training firm focused on Actuarial Science, Data Science and Risk

Management. Detralytics was founded to support companies in the advancement of actuarial L
science and help them to solve their challenges, while offering the perfect stepping stone to the EE:Detrazlytlcs
most talented actuarial students. We guarantee to go beyond traditional consulting, by offering a

unique combination of academic expertise, deep career and market knowledge.
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Introduction

* LUCY Report from the AMRAE :

M€ %
- Loss ratios : 84% in 2019, 167% in 2020, 88% in 2021 e 167 —:g
- Premiums : +44% collected, for a growth in numbers o 200 -
27,5% 75 =
EZ - g

100 — 80

75 — 60

« Report from the General Treasury Directorate on the 50 = 40
cyber risk, in September 2022: 25 20

2019 2020 2021

M Premiums M Claims @ Technical loss ratio

- Raises questions on data

- Points the necessity of innovating methods (e.g. the  souce 2022amae ey sty
bayesian)
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Introduction

* Question : Can we use the multiple textual ressources at hand (such as
the incident/claims descriptions) to get a better understanding of the
underlying risk?

* Objectives :
- Data augmentation

: Trags;‘orm "literary” insight in quantitative insight, to feed into bayesian
models

- Better anticipate and foresee within the processes of incident
management
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Summary

1- Embedding techniques
2- Neural Networks
3- Model enrichment

4- Uses and perspectives
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Base PRC: Privacy Rights Clearinghouse (US)

« Variable being a marker of severity (the number of records)and the claim description

3000 A
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0 2000 4000 6000 8000 10000 12000 14000

« Splitting of the base and flagging of the most severe claims using the number of records variable.

NB OF RECORDS < 4767 ? NB OF RECORDS > 4767 ?

Attritionnal claim Severe claim
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Base PRC: Privacy Rights Clearinghouse (US)

« The words used in the claim description also inform on the level of severity

1009% Severe claims Attritionnal claims

20%
80%
70% The following words are

60% associated with the decription

50% .. .
20% of attritionnal claims :

30%

20% « Paper
10% e Document
0% . e Dishonest
P R - A PRt QA P &S & ¢ .
{53‘2,&“'; & IS @i g} bo*&"‘ TES o 8 si"{oq *,@e & « Accidentally
& & ¥ o ¢ « School
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Pre-treating the textual data

— Treating the claim description

Claim description Cleaned description

Union Hospital suffered an inadvertent union hospital suffered inadvertent
disclosure on approximately 1/18/16 disclosure approximately resulted

Interfering information :

« Stopwords

that resulted in 1 record being exposed, record exposed included social security » Dates

which included social security number * Punctuation

numbers. . Numbers v —
v —
Vv —_—
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Pre-treating the textual data

— Treating the claim description

Claim description Cleaned description

Union Hospital suffered an inadvertent union hospital suffered inadvertent

Interfering information :

disclosure on approximately 1/18/16  disclosure approximately resulted * Stopwords

that resulted in 1 record being exposed, record exposed included social security » Dates

which included social security number * Punctuation

numbers. « Numbers v —
v —
Vv —_—

— Corpus dictionary
« Each word within the corpus is called a token

« An analysis of the text allows the identification of new
tokens, each one having 2 or 3 words to add in the

dictionnary
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Pre-treating the textual data

— Treating the claim description
Claim description Cleaned description
; : . . ; ; Interfering information :

Union Hospital suffered an inadvertent union hospital suffered inadvertent St ;

disclosure on approximately 1/18/16 disclosure approximately resulted opwords

that resulted in 1 record being exposed, record exposed included social security » Dates

which included social security number * Punctuation

numberS. ° Numbers j:
v —
v —_—

—= Corpus dictionary — Relevant string of words =~ =

« Each word within the corpus is called a token « social security number »

« An analysis of the text allows the identification of new « personal information »
tokens, each one having 2 or 3 words to add in the

dictionnary « email adress »
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Word embedding — Word2Vec

Input
0)
o Output
. softmax
X Hidden N
0 N ) 0 | ¥
1
0 > |4
: L |
1| X Matrix W = .| X Matrix W’ N = 1|y,
. avg
0 Z / :
0 o o)
- X N-dimension vector
" (Average of vectors of
_ all input words)
® Source : Xin Rong. word2vec Parameter Learning Explained
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https://arxiv.org/pdf/1411.2738.pdf

Word embedding — Word2Vec

A word is encoded in an N-dimensional space

Words with close meaning or influence will
be close in that space

Gender -1 1 -0,95 0,97 0,00 0,01
Royal 0,01 0,02 0,93 0,95 -0,01 0,00
Age 0,03 0,02 0,7 0,69 0,03 -0,02
Food 0,04 0,01 0,02 0,01 0,95 0,97
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Word embedding — Word2Vec

A word is encoded in an N-dimensional space

Words with close meaning or influence will

be close in that space Gender 1 1 0,95 0,07 0,00 0,01
Royal 0,01 0,02 0,93 0,95 -0,01 0,00
Age 0,03 0,02 0,7 0,69 0,03 -0,02
Close words to « insurance »
Food 0,04 0,01 0,02 0,01 0,95 0,97
Life
Insurer
== 3D Representation
Coverage
gancer
gondition
Enrollee The close words to « medical » in atment
our corpus of claim description e _
Plan can be 3D plotted utpatient
arseph
Guarantor aredical
aphysician
Aflac \
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Summary

1- Embedding techniques
2- Neural Networks
3- Model enrichment

4- Uses and perspectives
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Summary of the method

— Methodology

\g
‘:—/i—> —

Claim description

Embedding
(Word2vec)

Neural
—
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The family of model we chose: Multilayer perceptron

« Zooming on the part -> Multilayer perceptron

Input Average
words Descr.

.—} Hidden layers  jmessp{ Output
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The family of model we chose: Multilayer perceptron

 Gridsearch on the hidden layers of the neural network (F1 score)

Hidden layers

Output

= .

ECA 2024

www.eca2024.org

17



The family of model we chose: Multilayer perceptron

 Gridsearch on the hidden layers of the neural network (F1 score)

TP
TP + MEAN(FP; FN)

Hidden layers F1 score =

Output TP : True positives

FP : False positives
FN : False negatives Eatsts

0 1

01479 | 176
Pred

F1-Score = 60%
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Results : Distribution of the predictions

Distribution of the prédictions

Attritionnal claim 662 Severe claim
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Results : Distribution of the predictions

Distribution of the prédictions Zooming : the most severe claims
(>300,000 records)

Attritionnal claim 662 Severe claim
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Prediction quality by type of intrusion

Severe claims prediction Attritionnal claims prediction
500 HACK PORT DISC PHYS 700 PORT DISC HACK PHYS STAT
450
600

400

74% 54% 48% 56% 54% 47% 500 70% 69% 66% 78% 80% 75%
350
300 400
250
200 300
150 200
100 14 11 a7 7

9 3 100 4t 1
B M sh \ oo Jl | IR,
) . . S 12, 50
Total HACK PORT DISC INSD STAT PHYS UNKN CARD Total PORT DISC HACK PHYS INSD STAT UNKN  CARD
général général
W Correctly predicted W Wrongly predicted B Correctly predicted  EmWrongly predicted
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Prediction quality by type of organisation

Severe claims prediction Attritionnal claims prediction
200 GOV 700 GOV
450
600
400
350 48% 71% 79% 500 75% 65% 75% 68% 74% 70%
300
400
250
200 300
150 200
100
17
50 E E ® 2 100 a1 13 ) .
; 7
: H 8 & 4 B OB oMo\
Total MED EDU BSO Gov BSF BSR NGO Total MED EDU GOV  BSO  BSF  BSR NGO  UNKN
genéral général
m Correctly predicted  mWrongly predicted m Correctly predicted  mWrongly predicted
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Summary

1- Embedding techniques
2- Neural Networks
3- Model enrichment

4- Uses and perspectives
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Text mining : expressions régulieres

A neural network cannot understand nor
interpretate the link between numbers and
words

12 social security numbers # 12 companies
z 12 million

How to use and interpretate numerical data
within claim descriptions ?

ECA 2024 www.eca2024.org
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Text mining : expressions régulieres

A neural network cannot understand nor How to use and interpretate numerical data
interpretate the link between numbers and within claim descriptions ?
words

* In 50% of the descriptions, we can observe

12 social security numbers # 12 companies frequent forms such as :

# 12 million

number x words

« Those informations are directly linked to
the value of the number of records variable

=> The numerical data is a direct indicator of
the claim severity
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Text mining : expressions régulieres

A neural network cannot understand nor How to use and interpretate numerical data
interpretate the link between numbers and within claim descriptions ?
words

* In 50% of the descriptions, we can observe

12 social security numbers # 12 companies frequent forms such as :

# 12 million

number x words

Approximation :
« Those informations are directly linked to

A hacker [...] has potentially revealed the the value of the number of records variable
names, Social Security numbers, and, in some

cases, the birth dates and bank accounts of => The numerical data is a direct indicator of
27,000 employees working at 1,900 the claim severity

companies nationwide.
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Regular expressions

nb. Pred false

Dictionary -
T T N =
Predictive PEED
nb. Pred True Total
55 71

power ? .
companies
patient 16 77%
people 15 52 67 78%
- - Approximation :

million 43 5 48

JEEEIE 2 27 28 . A hacker [..] has potentially revealed the names, Social
student 4 24 28 86% Security numbers, and, in some cases, the birth dates and

employee ) 2 u o bank accounts of 27Z,0000€mployees working at [
B nationwide.

current 7 14 21 67%
individual 2 19 21 90% . . . .

Dictionnaire V et paires (N,, M)
customer 3 15 18 83%

n
Z Nuly ey < Seuil
k=0
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Let's come back to our example

A hacker [...] has potentially revealed the
names, Social Security numbers, and, in
some cases, the birth dates and bank

accounts of working at
nationwide.

270001 + 1900 = 27000 > 4700

This is a severe claim for
our new estimator !
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Let's come back to our example

A hacker [...] has potentially revealed the
names, Social Security numbers, and, in
some cases, the birth dates and bank

accounts of working at
nationwide.

270001 + 1900 = 27000 > 4700

This is a severe claim for
our new estimator !
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Type of Regular

Perceptron

organisation expressions

MED 63 +10
EDU 54 +11
BSO 48 +7
GOV 36 +10
BSF 34 +1
BSR 23 +0
NGO 7 +1

Number of severe claims with method used

29



Summary

1- Embedding techniques
2- Neural Networks
3- Model enrichment

4- Uses and perspectives
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Database : missing number of records

4000

3500

3000 BSO, BSF, BSR

2500 » The business categories are particularily

2000 represented in the sub-database

1500

1000 « The diagnosis (regarding the nb. of records)
500 seems hence less transparent

Total MED EDU GOV BSO BSF BSR NGO  UNKN

T0%%

EDU & business unnafiliated to the

60% financial and banking field (BSO, BSR)
5036 « Higher rate of severe claims
Hypotheses :

30%%

* Those type of organisations are "inferior"
when it comes to doing a diagnosis

10 « They do not wish to or do not know how to

0% quantify the loss related to the lost data

Total MED EDU GOV BSO BSF BSR MG UMEMN
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The issue of claim management

= Cyber insurance has a component of victim assistance

= Despite the assistance business not being new, the insurer lacks
expertise in the cyber component

= A use of the presented methods : Help detecting the claims that need a
particular type of answer, to improve the way they are handled (and to
minimize their detrimental consequences)

= |nput : Claim reports, preliminary expertise
= Qutput : diagnosis and assistance recommendations
= Extension : Follow-up of the evolution with time of the claims
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Recurrent Neural Network (RNN) for text analysis

Input Forget gate Input gate Ouput

Long-term _ _ Long-term
Memary L . + Memory

. :
t ) :i 1\%
=l

—~ - +
\ A

MNon linerarities

Input vector Sigmoid
Bias

" Hyperbolic tangent

= Example of the LSTM
= QOther reference on connex issue : Cohen-Sabban,l.,Lopez,0.,Mercuzot,Y.

(2021) Automaric analysis of insurance reports through deep neural
networks to identify severe claims, Annals of Actuarial Science.
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Perspective of evolution : the bayesian

Differences in the type of vision :
- Frequentist approach : we have (X;, ..., X;,) of distribution Py , and we
infer/estimate 6, using those only informations

- Bayesian approach : We suppose 6, to be a random variable, of given
distribution a priori m, and we observe (X4, ..., X;,) of distribution, given

60 — t, ]Pt

- The a priori approach implies a preliminary insight/diagnosis
- Question : how can we transform this insight mathematically speaking ?
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- Thank you

h.rapior@detralytics.eu

https://detralytics.com/detra-notes/
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