DAV/DGVFM **Herbsttagung**

2024

Einige Optimierungsprobleme unter Vorgabe einer Zielverteilung

Herbsttagung 2024

Herbsttagung 2024

[Introduction](#page-4-0)

2

[Target: Precision Landing With a Brownian Surplus](#page-9-0)

[Target: Precision Landing With a Brownian Surplus](#page-9-0)

[Target: Opportunistic Mode With a Compound Poisson Surplus](#page-19-0)

[Target: Precision Landing With a Brownian Surplus](#page-9-0)

[Target: Opportunistic Mode With a Compound Poisson Surplus](#page-19-0)

The Surplus

We look at an insurance company, whose surplus is assumed to follow

a) **A Brownian motion with drift:**

 $X_t = \mu t + \sigma W_t$, $t \in [0, T]$,

where μ , σ > 0 and *W* is a standard Brownian motion.

The Surplus

We look at an insurance company, whose surplus is assumed to follow

a) **A Brownian motion with drift:**

 $X_t = \mu t + \sigma W_t$, $t \in [0, T]$,

where μ , σ > 0 and *W* is a standard Brownian motion.

b) **A classical risk model:**

$$
X_t = ct - \sum_{i=1}^{N_t} Z_i , \quad t \in [0, T].
$$

where c > 0, \mathcal{N} = { N_t } is a Poisson process independent of the iid claim sizes $(Z_i)_{i\geq 1}$.

The Surplus

We look at an insurance company, whose surplus is assumed to follow

a) **A Brownian motion with drift:**

 $X_t = \mu t + \sigma W_t$, $t \in [0, T]$,

where $\mu, \sigma > 0$ and W is a standard Brownian motion.

b) **A classical risk model:**

$$
X_t = ct - \sum_{i=1}^{N_t} Z_i , \quad t \in [0, T].
$$

where c > 0, \mathcal{N} = { N_t } is a Poisson process independent of the iid claim sizes $(Z_i)_{i\geq 1}$.

In both cases, the initial capital is set to 0.

Herbsttagung 2024

Target: A Specific Terminal Surplus Distribution

[Target: Precision Landing With a Brownian Surplus](#page-9-0)

[Target: Opportunistic Mode With a Compound Poisson Surplus](#page-19-0)

Target: The Terminal Surplus Is Normally Distributed

Let the surplus be given by a Brownian motion with drift.

Some optimisation problems under the constraint of a normal terminal surplus:

- Maximise the expected discounted dividends.
- Minimise the ruin probability over dividend payments **!!!**
- Minimise the ruin probability over proportional reinsurance.

Target: The Terminal Surplus Is Normally Distributed

Let the surplus be given by a Brownian motion with drift.

Some optimisation problems under the constraint of a normal terminal surplus:

- Maximise the expected discounted dividends.
- Minimise the ruin probability over dividend payments **!!!**
- Minimise the ruin probability over proportional reinsurance.

 F^* Precision landing is only possible with a valid dynamics (due to limitations in the control variables)!

 \mathbb{P} Precision landing is only possible with a valid dynamics (due to limitations in the control variables)!

 F^* Assume: the surplus dynamics and the target parameters allow to reach the target.

 \mathbb{P} Precision landing is only possible with a valid dynamics (due to limitations in the control variables)!

- F^{max} Assume: the surplus dynamics and the target parameters allow to reach the target.
- \mathbb{F} The target distribution is given by $N(\mu\,T,\sigma^2\,T).$

 F^* Precision landing is only possible with a valid dynamics (due to limitations in the control variables)!

 F^* Assume: the surplus dynamics and the target parameters allow to reach the target.

 \mathbb{F} The target distribution is given by $N(\mu\,T,\sigma^2\,T).$

The solution to the optimisation problems are:

- For a positive preference rate δ > 0: "pay on the maximal rate until some critical time t^* and do not pay after" in order to maximise the expected dividends.
- "Do not pay until some critical time *t* [∗] and pay on the maximal rate after" to minimise the ruin probability.
- Minimising the ruin probability over proportional reinsurance: **A complicated case!**

 F^* Precision landing is only possible with a valid dynamics (due to limitations in the control variables)!

 E^* Assume: the surplus dynamics and the target parameters allow to reach the target.

 \mathbb{F} The target distribution is given by $N(\mu\,T,\sigma^2\,T).$

The solution to the optimisation problems are:

- For a positive preference rate δ > 0: "pay on the maximal rate until some critical time t^* and do not pay after" in order to maximise the expected dividends.
- "Do not pay until some critical time *t* [∗] and pay on the maximal rate after" to minimise the ruin probability.
- Minimising the ruin probability over proportional reinsurance: **A complicated case!**

A 2-Period Model With Reinsurance

The strategy in [0,*T*] can be changed only once, at *T*/2.

Because the mean, the variance and the distribution are fixed, we look at the strategies of the form: (b_0, b_1) , where b_0 is a constant reinsurance strategy in [0, $T/2$) and b_1 in [$T/2$, T] with some $\Lambda > 0$:

$$
\mathbb{E}[X_1]b_0 + \mathbb{E}[X_1]b_1 = 2(\mu + \Lambda), \text{ and } b_0^2 \text{Var}(X_1) + b_1^2 \text{Var}(X_1) = \sigma^2.
$$

Herbsttagung 2024

The solutions have the form

10

[Target: Precision Landing With a Brownian Surplus](#page-9-0)

[Target: Opportunistic Mode With a Compound Poisson Surplus](#page-19-0)

Target: The Terminal Surplus Close to a Desired Distribution

 \mathbb{F} We are looking at a compound Poisson process under proportional reinsurance $\{X_t^b\}$ and fix a desired terminal (at *t* = 1) distribution *Q*.

For The squared Wasserstein distance to the desired target should be minimised over constant deductibles:

$$
\inf_{b} \inf_{Y \sim \Psi} \mathbb{E} \left[(X_1^b - Y)^2 \right] = ?
$$

Note that it holds

$$
\inf_{Y\sim\Psi} \mathbb{E}\left[(X_1^b-Y)^2\right]=\mathbb{E}\left[(G^{-1}(U;b)-\Psi^{-1}(U))^2\right]\,,
$$

where G^{-1} is the inverse of the distribution of X^b_1 , and U is an on [0, 1] uniformly distributed random variable.

Herbsttagung 2024

The Modified Problem

The inverse distribution function of *X*¹ (left) and the Wasserstein distance in dependence on *b*.

VaR for the Normal Distribution as the Target and Exponential Claims

VaR for X_1 (gray dashdotted), VaR for the optimal strategy (solid black) and VaR for the normal target (dashed black). 14

Further Problem Set I:

Minimise the variance for a given expectation (and correlation coefficient). A non time-consistent problem.

Dynamic strategies.

Achievability of distribution choices.

Further Problem Set II:

For a dividend optimisation problem:

Fix a strategy that seems reasonable. Now, solve the HJB backwards and find the corresponding drift and variance. The diffusion with these parameters features the chosen strategy as the optimal dividend choice behaviour.

DAV/DGVFM **Herbsttagung** 2024

Vielen Dank für Ihre Aufmerksamkeit.

FINANZ-UND THE REPORT OF THE MANUFACTURE AND THE THE FRANCIS AND **ENVIOUS RNI**
ACTIVINA MATHEMATICS