

DAV/DGVFM Herbsttagung 2025

Noa Zamstein

All rights reserved. This presentation may not be reproduced or distributed without permission

Agenda

- Motivation: handling personal information
 - Synthetic data as an enabler
- Why synthetic data matters in actuarial science
- Principles of synthetic data generation
- Utility and privacy considerations
- Summary and conclusions

Three dead, four hospitalized after fiery, high-speed crash in

Orange

Linking between different data sources can reveal a lot!

Driver data

ST_CASE [‡]	STATENAME [‡]	AGE [‡]	COUNTY [‡]	MONTH [‡]	HOURNAME [‡]	VPICMAKENAME [‡]	BODY_TYPNAME [‡]	PER_TYPNAME
60609	California	19	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Driver of a Motor Vehicle In-Transport
60609	California	19	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Passenger of a Motor Vehicle In-Transport
60609	California	17	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Passenger of a Motor Vehicle In-Transport
60609	California	14	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Passenger of a Motor Vehicle In-Transport
60609	California	14	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Passenger of a Motor Vehicle In-Transport
60609	California	14	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Passenger of a Motor Vehicle In-Transport
60600	California	26	59	7	2:00am-2:59am	Nissan	4-door sedan, hardtop	Passenger of a Motor Vehicle In-Transport

Drugs data

STATE [‡]	STATENAME [‡]	ST_CASE *	VEH_NO [‡]	PER_NO [‡]	DRUGSPEC	DRUGSPECNAME	DRUGRES [‡]	DRUGRESNAME
6	California	60609	1	1	2	Urine	6002	Phencyclidine
6	California	60609	1	1	2	Urine	5060	Delta 9-tetrahydrocannabinol [THC]
6	California	60609	1	2	0	Test Not Given	0	Test Not Given
6	California	60609	1	3	99	Reported as Unknown if Tested	9999	Reported as Unknown if Tested for Drugs
6	California	60609	1	4	0	Test Not Given	0	Test Not Given
6	California	60609	1	5	99	Reported as Unknown if Tested	9999	Reported as Unknown if Tested for Drugs
6	California	60609	1	6	0	Test Not Given	0	Test Not Given
6	California	60609	1	7	99	Reported as Unknown if Tested	9999	Reported as Unknown if Tested for Drugs

The problem

There is a huge difficulty in mobilizing personal data due to regulations and privacy concerns

Contrary to intuition, simple de-identification is often insufficient

Common solutions produce data that is either aggregated or violates privacy

The solution

Create fictitious data that prevents identification

Individual level data for modelling

Maintains the **utility** of the original data

Can be shared, maintaining privacy

Before we start, some use cases

Erasing old data

We must comply with "The right to be forgotten"

Innovative Testing Environments

• Simulate data in **external environments**, testing new tools and strategies.

Migrating from an on-prem system

 Before moving to the cloud show me the benefits on my data

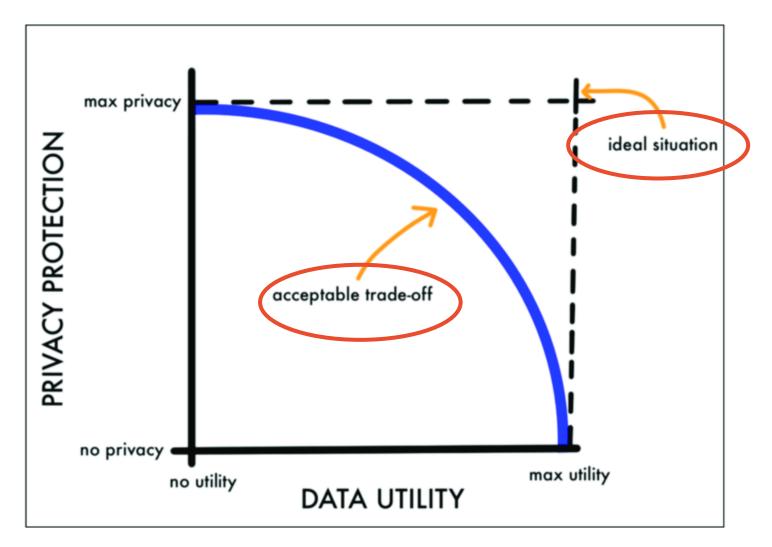
Compliance with data minimization principles

 Insurers are bound to storing only the necessary amount of customer data

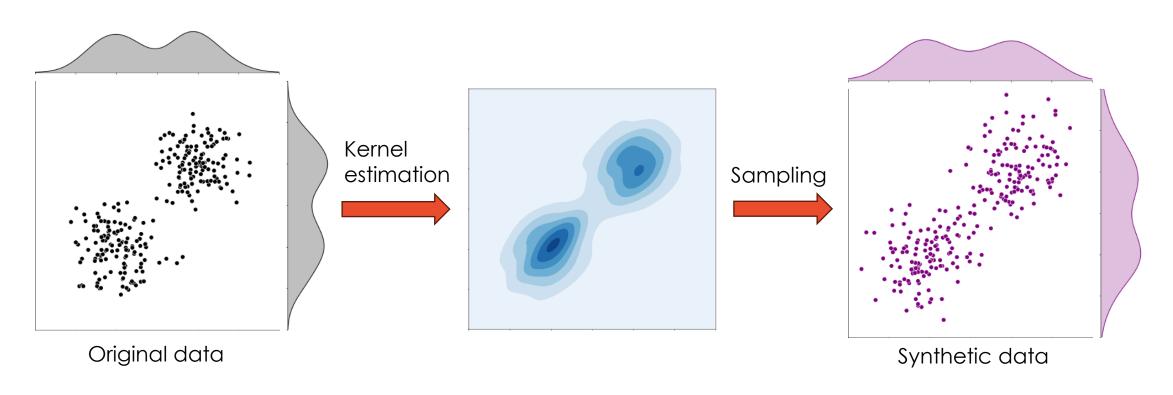
Third party data sharing and collaboration

 Allow external parties to work with datasets without access to personal data

The tradeoff: utility vs. privacy



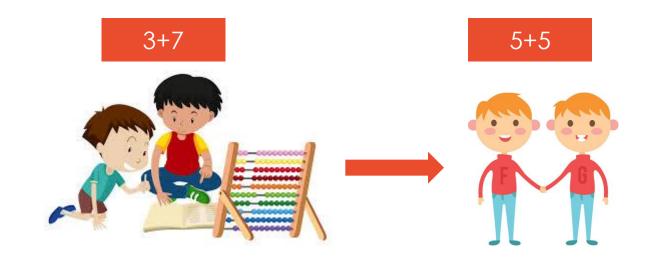
Synthetic data generation principles (1)



The difficult part is to do this accurately in multidimensions

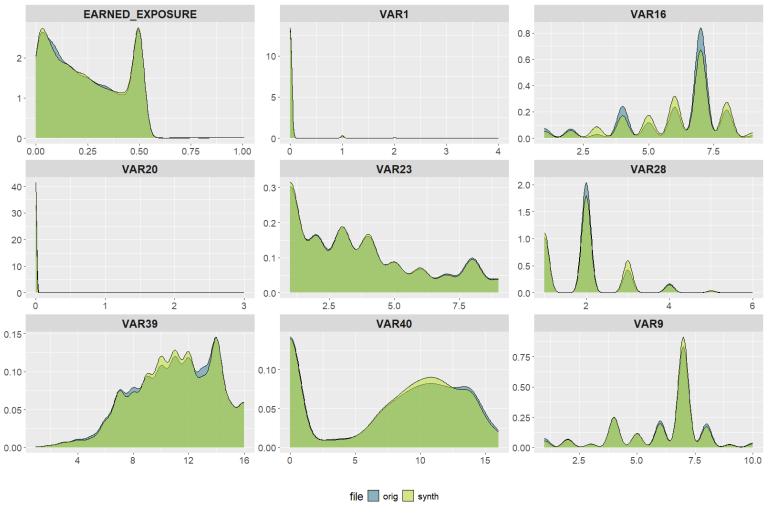
Adapted from: Spot the difference: comparing results of analyses from real patient data and synthetic derivatives (2020). Foraker, R. E. et al, JAMIA open, 3, 557

Synthetic data generation principles (2)



Average=5 Sdv=2

Fidelity of synthetic data (1)

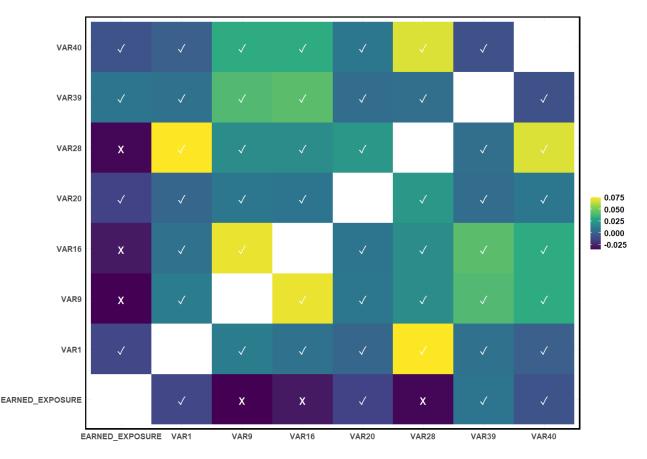


Zamstein, N. (2025). Enhancing Actuarial Ratemaking with Synthetic Data for Privacy Preservation. CAS E-Forum Quarter 1 (May).

Fidelity of synthetic data (2)

Difference in Spearman correlation between original and synthetic data

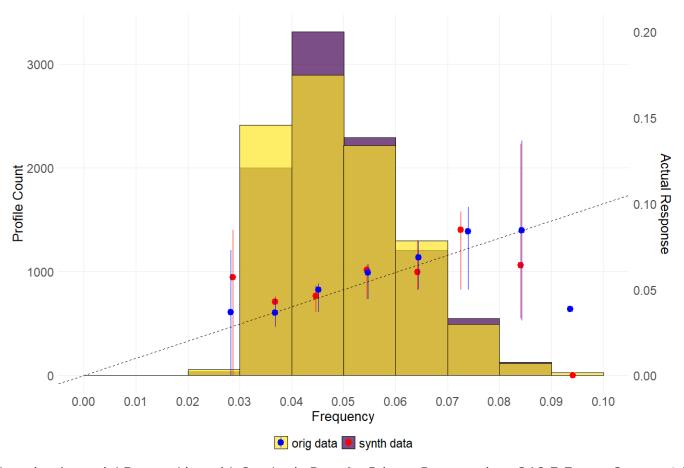
Statistically significant difference



Zamstein, N. (2025). Enhancing Actuarial Ratemaking with Synthetic Data for Privacy Preservation. CAS E-Forum Quarter 1 (May).

Fidelity of synthetic data (3)

Frequency models trained on synthetic and original data



Privacy of synthetic data (1)

Censoring:

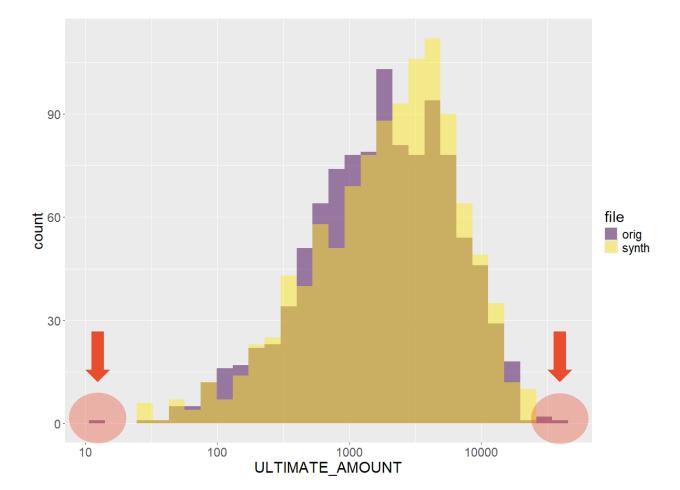
Generalization to ensure large enough groups of individuals

EARNED_EXPOSURE *	ULTIMATE_CLAIM_COUNT	VAR4	VAR27 [‡]
0.0850	0.0000000	21	BE
0.4959	0.0000000	26	ВЈ
0.5041	0.0000000	25	BR
0.1945	0.0000000	2	Al
0.0493	0.0000000	27	BF
0.1617	0.0000000	23	AO
0.9149	0.0000000	19	AJ
0.0001	0.0000000	19	AO
0.1644	0.0000000	24	BS
0.3562	0.0000000	29	AK
0.2630	1.0012617	24	BI
0.0548	0.0000000	20	BL
0.4083	0.0000000	20	AD
0.4000	0.0000000	16	во
0.4082	0.0000000	21	BR
0.3425	0.0000000	21	AJ
0.1617	0.0000000	27	AZ
0.0001	0.0000000	17	BR

	VAR27	VAR4	ULTIMATE_CLAIM_COUNT	EARNED_EXPOSURE
	BS	19	0.0000000	0.4822
	Al	19	0.0000000	0.4329
	ВТ	23	0.0000000	0.0521
censored	censored	21	0.0000000	0.5041
	AJ	18	0.0000000	0.3315
	censored	18	1.0004295	0.1699
	AJ	16	0.0000000	0.0001
	BR	14	0.0000000	0.4959
	AJ	26	0.0000000	0.3698
	ВМ	15	0.0000000	0.1370
	AJ	19	0.0000000	0.1315
	AJ	20	0.0000000	0.0658
censored	censored	21	0.0000000	0.0055
CCH3OICG	censored	15	0.0000000	0.5041
	BR	27	0.0000000	0.1945
	censored	23	0.0000000	0.4082
	censored	16	0.0000000	0.5014
	BF	20	0.0000000	0.4904

Privacy of synthetic data (2)

Synthetic data should trim **extreme outliers**, such that the distributional parameters are not affected



Privacy of synthetic data (3)

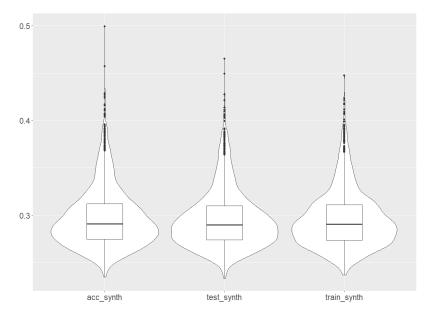
Accessible (50%)

Original dataset

Train (50%)

Synthetic

Test (50%)



The distributions of distances are the same, preventing membership inference

Summary and conclusions

- Synthetic data provides a layer of protection against reidentification
- Maintains individual level details for predictive modelling
- Preserves privacy and robust against inference attacks
- Any acceptable solution must balance between the two

Noa.Zamstein@earnix.com

This presentation reflects NZ's personal views and does not necessarily represent the views of Earnix Ltd.

