

Excess Mortality Across Different Nations: Strengths and Limitations of Existing Measures

AYŞE ARIK

LINSW BUSINESS SCHOOL/SENIOR LECTURES

Focus on:

The concept of 'excess mortality':

 observed deaths during catastrophic events, e.g. COVID-19, compared to the expected number of deaths at 'normal' times

based on different measures

Investigating demographic and cross-country patterns

• from January 2020 to 2024

What we have done:

- Focusing on all-cause mortality in 16 countries to
 ... avoid discrepancies due to the reporting of COVID-19 deaths
 ... examine the direct and indirect impacts of the pandemic
- Short-Term Fluctuations (STMF) data series
- Investigating excess mortality based on:
 - Proportional excess mortality (P-scores)
 - Relative age-standardised excess mortality (ASMR)
 - A methodological approach

STMF dataset

All-cause deaths data STMF, Human Mortality Database (HMD)

- Age groups: 0–14, 15–64, 65–74, 75–84, 85+
- Gender
- Years: 2015–2023 (weekly)
- Country: Australia, Belgium, Canada, England and Wales, France, Germany, Hungary, Israel, Italy, Netherlands, Poland, South Korea, Spain, Sweden, Switzerland, and the USA

All-cause mortality: women & men aged 65-74

- Usual seasonal patterns: winter v. summer deaths
 - ...with a reversed cycle in Australia v. other countries
 - ... mortality peaks during winter time
- Sharp increases in (especially winter) mortality from 2020
- At the time of this research: Deaths in 2023 were complete, apart from Australia (until Week 47), Canada (Week 30), South Korea (Week 39)

Excess mortality: P-scores

$$P_{a,c,g,y} = \frac{D_{a,c,g,y} - \overline{D}_{a,c,g,\text{reference year}}}{\overline{D}_{a,c,g,\text{reference year}}}$$

- $P_{a,c,g,y}$: P-scores, excess deaths (%) at age-at-death a for gender g in country c at a given year y
- $D_{a,c,g,y}$: all-cause (observed) number of deaths
- $\overline{D}_{a,c,g,\text{reference year}}$: average number of deaths during the reference year(s), e.g. 2015–2019

P-scores: men aged 65-74, relative to 2015-2019

- The P-scores compared to the related average number of deaths bw 2015–2019
- Throughout 2020-2023
 - ... the USA and Poland are the most impacted
 - ... Sweden is the least impacted

P-scores: men aged 65-74, relative to 2019

- The P-scores compared to the related number of deaths in 2019
- Mostly comparable results across different reference years
 - ... bigger changes
 - ...similar trends

P-scores: weekly, men aged 85+, relative to 2015-2019

- Wave 1: highly synchronous across countries, aligned with the pandemic phases in England

9 / 21

Excess mortality: relative ASMR

Relative change in ASMR:

$$\mathsf{rASMR}_{c,g,w,y} = \frac{\mathsf{ASMR}_{c,g,w,y} - \overline{\mathsf{ASMR}}_{c,g,w,\mathsf{reference\ year}}}{\overline{\mathsf{ASMR}}_{c,g,w,\mathsf{reference\ year}}}$$

 $\overline{\mathsf{ASMR}}_{c,g,w,\mathsf{reference\ year}}$: average ASMR in week w during 2015–2019

$$\mathsf{ASMR}_{c,g,w,y} = \frac{\sum_{a} \theta_{a,c,g,w,y} E_a^{\mathsf{std}}}{\sum_{a} E_a^{\mathsf{std}}}$$

 $\dots E_a^{\rm std}$: standard population at age-at-death a

 $\dots \theta_{a,c,g,w,y}$: mortality rates

 $\dots E_{a,c,g,w,y}$: weekly population estimates

an interpolation method following the ONS (2022)

Relative ASMR: men, WHO standard population

WHO Standard Population (2000–2025)

- Continuing high excess mortality in the USA
- A sharp peak in S. Korea in 2022
 - the Omicron variant?
 - age disparity?
 - Negative excess trend in Canada since 2022
 - real or artefact?
 - A shift in excess mortality in Australia since 2022
 - the Omicron variant?
 - re-opening of international borders?

Relative ASMR: men, ESP standard population

European Standard Population 2013

... notably older than the WHO standard

- The excess in the USA is relatively much lower, with potential mortality gain
- No negative excess trend in Canada
- How appropriate is the standard we refer to for international comparisons?

Excess mortality: a methodological approach

- A simple linear regression model between 2015–2019
- Extrapolation of death counts to the post-pandemic years
- Reconciliation approach for extrapolated values

Observed deaths in a group = \sum Predictions in the same group following the study of Li et al. (2019)

A linear regression model

$$D_t^{\mathsf{std}} = \alpha + \beta \times t + \epsilon_t$$

ullet D_t^{std} : age-, country- and gender-specific standardised deaths at time t

$$D_t^{\mathsf{std}} = \frac{D_t - \mu_{t(w)}}{\mathsf{sd}_{t(w)}}$$

- $\ldots \mu_{t(w)}$: average death over w-1, w, and w+1
- \ldots sd_{t(w)}: standard deviation over the same weeks
- ullet ϵ_t : error term modelled through ARIMA(p,d,q)

Why does a simple model make sense?

- ... seasonality?
- ... population size?
- ... different patterns in different countries?

Regression model: observed v. estimated deaths

Observed (dots) and extrapolated (solid lines) deaths for men and women aged 65 to 84 in England and Wales

Excess deaths = Observed deaths -

Extrapolated deaths based on the trends in 2015-2019

P-scores: weekly, men aged 85+, relative to 2015-2019

- Wave 1: highly synchronous across countries, aligned with the pandemic phases in England

Regression model, weekly, men aged 85+

- More substantial decline in excess mortality in recent years
- Previous upward trend(s) flattened, e.g. S. Korea

Regression model, pandemic peaks, men

Summary: Methodological approach v. P-scores

- Bigger variability in the rankings, compared to the P-scores, with some comparable results
 - ...the USA is among the most impacted
 - ... Sweden is among the least impacted
- Different trends over time
- Is the model too simple?
 - weekly v. annual?

Discussion

- Consistent findings across different measures
 - ... among the most impacted countries at the beginning of the pandemic
- Mostly comparable results by gender across different nations
- Over-generalisation should be avoided, e.g.
 - ... for younger age groups
 - ...in the most recent calendar years
- A more dynamic modelling structure?
- The impact of COVID-19 health measures on mortality?
- Cause-specific excess mortality in different population groups?

Thank you! Obrigado!

Questions?

Ayşe Arık

E: <u>a.arik@unsw.edu.au</u>
W: https://orcid.org/0000-0001-8190-6768

