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How to Answer?
A continuous-time life-cycle model

Choose optimal consumption and investment.

Calculate the individual’s lifetime utility in markets without and with
access to annuitization.

Compare lifetime utility measures by translating them into wealth
proportions using certainty equivalents.
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The Four Problems

The underlying financial market is a classical Black–Scholes financial
market

Invest proportion π(t), consumes at rate c(t) at time t.

CRRA and exponential discounting
u(t, s, c) = e−ρ(s−t) 1

1− γ
c1−γ .
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Without Insurance

Wealth
+ Interest + Return on the risky asset − Consumption
± The risk associated with the risky asset

dX(t) = X(t)(r + π(t)(α− r))dt − c(t)dt + X(t)π(t)σdW (t)
X(0) = x0 > 0.

Maximize future accumulated utility of consumption, over consumption
and investment

V (t, x) = sup
c,π

Et,x

[∫ ∞

t
u(t, s, c(s))I(s)ds

]
.

Uninsured individual with time-additive preferences
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A Particular Case

Imagine we remove away all the risk: µ = 0, α = r , σ = 0

We face a deterministic optimization problem
sup
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t
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X is a deterministic process.

There is no risk left, but there is still a γ,
Aversion towards the variation of consumption over time
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Seperated Preferences

Jensen and Steffensen (2015) proposed a generalization

Seperating the relative risk aversion (γ) in the utility function: u, with
the aversion towards the variation of consumption over time (φ) with a
new function: v

V (t, x) =

∫ ∞

t
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The Comparison

V ia(0, x(1− ε)) = V ua(0, x),
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Numerical Results

Table: The parameters used in the numerical examples. Note r , α, and σ are
thought of as corrected for inflation.

Parameters Description Value

z Age at initialization/retirement 65
ρ Impatience factor for all states 0.02
r0 The constant drift of the risk-free asset 0.02
α The constant drift of the risky asset 0.05
σ The constant volatility of the risky asset 0.2
A Parameter for pricing mortality intensity 0.0000005
B Parameter for pricing mortality intensity 1.14

γ = 2 and φ = 6



Relative loss of wealth as a function of interest rate

Figure: Interest rate



Relative loss of wealth as a function of market price of
risk

Figure: Market price of risk



Relative loss of wealth as a function of insurance pricing

Figure: Insurance pricing



Relative loss of wealth as a function of lifetime
unceartainty

Figure: Lifetime unceartainty
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