What is the value of the annuity market?

Julie Bjørner Søe

March 2024

Jointly with Mogens Steffensen, published in Decisions in Economics and Finance

UNIVERSITY OF COPENHAGEN

Whether and when to annuitize?

Whether and when to annuitize?

Should one put wealth at stake for mortality credits?

What is the maximum value of the annuity market to an annuitant?

What is the maximum value of the annuity market to an annuitant?

How does the annuity market's value depend on various market parameters of the market and mortality?

Table of Contents

The Objective

Four Problems

The Comparison

Numerical Results

A continuous-time life-cycle model

A continuous-time life-cycle model

Choose optimal consumption and investment.

A continuous-time life-cycle model

Choose optimal consumption and investment.

Calculate the individual's lifetime utility in markets without and with access to annuitization.

A continuous-time life-cycle model

Choose optimal consumption and investment.

Calculate the individual's lifetime utility in markets without and with access to annuitization.

Compare lifetime utility measures by translating them into wealth proportions using certainty equivalents.

Accumulation Phase	Decumulation Phase

Accumulation Phase	Decumulation Phase
Low mortality rates	Higher mortality rates

Accumulation Phase	Decumulation Phase
Uncertain income and lifetime	No uncertain income

Accumulation Phase	Decumulation Phase
Uncertain income and lifetime	No uncertain income
No explicit solution	Explicit solution

Accumulation Phase	Decumulation Phase
Uncertain income and lifetime No explicit solution Non-hedgeablilty of labor income	No uncertain income Explicit solution

 Decumulation Phase
No uncertain income Explicit solution

Objective: Calculate lifetime consumption in the market with and without access to an annuity

Decumulation Phase

Other solutions: Numerical or sufficiently complete market.

The underlying financial market is a classical Black–Scholes financial market

The underlying financial market is a classical Black–Scholes financial market

Invest proportion $\pi(t)$, consumes at rate c(t) at time t.

The underlying financial market is a classical Black–Scholes financial market

Invest proportion $\pi(t)$, consumes at rate c(t) at time t.

CRRA and exponential discounting

$$u(t,s,c) = e^{-\rho(s-t)} \frac{1}{1-\gamma} c^{1-\gamma}.$$

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t)$$

$$X(0) = x_0 > 0.$$

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t)$$

$$X(0) = x_0 > 0.$$

Maximize future accumulated utility of consumption, over consumption and investment

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t)$$

$$X(0) = x_0 > 0.$$

Maximize future accumulated utility of consumption, over consumption and investment

$$V(t,x) = \sup_{c,\pi} E_{t,x} \left[\int_t^\infty u(t,s,c(s)) I(s) ds \right]$$

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t)$$

$$X(0) = x_0 > 0.$$

Maximize future accumulated utility of consumption, over consumption and investment

$$V(t,x) = \sup_{c,\pi} E_{t,x} \left[\int_t^\infty u(t,s,c(s)) I(s) ds \right].$$

Uninsured individual with time-additive preferences

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\,$ The risk associated with the risky asset
- + Mortality credits

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset
- + Mortality credits

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t) + \mu^*(t)X(t)dt, \qquad X(0) = x_0 > 0.$$

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset
- + Mortality credits

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t) + \mu^*(t)X(t)dt, \qquad X(0) = x_0 > 0.$$

Maximize future accumulated utility of consumption, over consumption and investment - in the same way

Wealth

- $+ \quad \text{Interest} + \text{Return on the risky asset} \text{Consumption}$
- \pm $\;$ The risk associated with the risky asset
- + Mortality credits

$$dX(t) = X(t)(r + \pi(t)(\alpha - r))dt - c(t)dt + X(t)\pi(t)\sigma dW(t) + \mu^*(t)X(t)dt, \qquad X(0) = x_0 > 0.$$

Maximize future accumulated utility of consumption, over consumption and investment - in the same way

Insured individual with time-additive preferences

A Particular Case

Imagine we remove away all the risk: $\mu = 0, \alpha = r, \sigma = 0$

A Particular Case

Imagine we remove away all the risk: $\mu = 0, \alpha = r, \sigma = 0$

We face a deterministic optimization problem $\sup_{c} \int_{t}^{\infty} u(t, s, c(s)) ds$ X is a deterministic process.

A Particular Case

Imagine we remove away all the risk: $\mu = 0, \alpha = r, \sigma = 0$

```
We face a deterministic optimization problem

\sup_{c} \int_{t}^{\infty} u(t, s, c(s)) ds
X is a deterministic process.
```

There is no risk left, but there is still a γ , Aversion towards the variation of consumption over time
Jensen and Steffensen (2015) proposed a generalization

Jensen and Steffensen (2015) proposed a generalization

Jensen and Steffensen (2015) proposed a generalization

$$V(t,x) = \int_{t}^{\infty} v(u^{-1}(E_{t,x}[u(t,s,c(s))I(s)]))ds.$$

Jensen and Steffensen (2015) proposed a generalization

$$V(t,x) = \int_{t}^{\infty} v(\underbrace{u^{-1}(E_{t,x}[u(t,s,c(s))I(s)])}_{\text{Certainty equivalent}})ds,$$

Jensen and Steffensen (2015) proposed a generalization

$$V(t,x) = \int_{t}^{\infty} \underbrace{v(\underbrace{u^{-1}(E_{t,x}\left[u(t,s,c(s))I(s)\right])}_{\text{Certainty equivalent}}) ds}_{\text{Preferences concerning time variation}}$$

Jensen and Steffensen (2015) proposed a generalization

Separating the relative risk aversion (γ) in the utility function: u, with the aversion towards the variation of consumption over time (ϕ) with a new function: v

$$V(t,x) = \int_{t}^{\infty} \underbrace{v(\underbrace{u^{-1}(E_{t,x}\left[u(t,s,c(s))I(s)\right])}_{\text{Certainty equivalent}}\right)}_{\text{Preferences concerning time variation}} ds,$$

Time inconsistency is dealt with by equilibrium theory.

	Time-additive preferences	Separated preferences
Uninsured		
Insured		

	Time-additive preferences	Separated preferences
Uninsured	The u function (γ),	
	Mortality credits	
Insured		

	Time-additive preferences	Separated preferences
Uninsured	The u function (γ),	The <i>u</i> and <i>v</i> function (γ and ϕ),
	Mortality credits	Mortality credits
Insured		

	Time-additive preferences	Separated preferences
Uninsured	The <i>u</i> function (γ) , Mortality credits	The <i>u</i> and <i>v</i> function (γ and ϕ), Mortality credits
Insured	The u function (γ) + Mortality credits	

	Time-additive preferences	Separated preferences
Uninsured	The <i>u</i> function (γ) ,	The u and v function (γ and ϕ),
	Mortality credits	Mortality credits
Insured	The u function (γ)	The u and v function (γ and ϕ)
	+ Mortality credits	+ Mortality credits

All solutions: $V^{\mathsf{Prop}}(t,x) = (a^{\mathsf{Prob}}(t))^{\mathsf{Preferences}} \cdot \frac{1}{1-\gamma} x^{1-\gamma}$

All solutions: $V^{Prop}(t,x) = (a^{Prob}(t))^{Preferences} \cdot \frac{1}{1-\gamma}x^{1-\gamma}$ The difference is a "design" mortality rate and "design" discount rate

$$a^{\mathsf{Prob}}(t) = \int_{t}^{\infty} e^{-\int_{t}^{s} \delta^{\mathsf{Prob}} + \mu^{\mathsf{Prob}}} ds$$

All solutions: $V^{Prop}(t,x) = (a^{Prob}(t))^{Preferences} \cdot \frac{1}{1-\gamma}x^{1-\gamma}$ The difference is a "design" mortality rate and "design" discount rate

$$a^{\operatorname{Prob}}(t) = \int_{t}^{\infty} e^{-\int_{t}^{s} \delta^{\operatorname{Prob}} + \mu^{\operatorname{Prob}}} ds$$

	Time-additive preferences	Separated preferences
Uninsured	$V^{ua}(t,x)$	$V^{us}(t,x)$
Insured	$V^{ia}(t,x)$	$V^{is}(t,x)$

All solutions: $V^{Prop}(t,x) = (a^{Prob}(t))^{Preferences} \cdot \frac{1}{1-\gamma}x^{1-\gamma}$ The difference is a "design" mortality rate and "design" discount rate

$$a^{\mathsf{Prob}}(t) = \int_{t}^{\infty} e^{-\int_{t}^{s} \delta^{\mathsf{Prob}} + \mu^{\mathsf{Prob}}} ds$$

	Time-additive preferences	Separated preferences
Uninsured	$V^{ua}(t,x)$	$V^{us}(t,x)$
	a ^{ua} (t)	$a^{us}(t)$
Insured	$V^{ia}(t,x)$	$V^{is}(t,x)$
	$a^{ia}(t)$	$a^{is}(t)$

$$V^{ia}(0, x(1-\epsilon)) = V^{ua}(0, x), V^{is}(0, x(1-\epsilon)) = V^{us}(0, x).$$

$$\begin{split} & V^{ia}(0,x(1-\epsilon)) = V^{ua}(0,x), \\ & V^{is}(0,x(1-\epsilon)) = V^{us}(0,x). \end{split}$$

The relative loss of wealth from losing access to the insurance market

$$\begin{split} & V^{ia}(0,x(1-\epsilon)) = V^{ua}(0,x), \\ & V^{is}(0,x(1-\epsilon)) = V^{us}(0,x). \end{split}$$

The relative loss of wealth from losing access to the insurance market

$$\begin{split} \epsilon &= 1 - \left(\frac{\mathbf{a}^{u\mathbf{a}}(0)}{\mathbf{a}^{i\mathbf{a}}(0)}\right)^{\frac{\gamma}{1-\gamma}},\\ \epsilon &= 1 - \left(\frac{\mathbf{a}^{u\mathbf{s}}(0)}{\mathbf{a}^{i\mathbf{s}}(0)}\right)^{\frac{\phi}{1-\phi}}. \end{split}$$

Numerical Results

Table: The parameters used in the numerical examples. Note r, α , and σ are thought of as corrected for inflation.

Parameters	Description	Value
Z	Age at initialization/retirement	65
ho	Impatience factor for all states	0.02
<i>r</i> ₀	The constant drift of the risk-free asset	0.02
α	The constant drift of the risky asset	0.05
σ	The constant volatility of the risky asset	0.2
A	Parameter for pricing mortality intensity	0.0000005
В	Parameter for pricing mortality intensity	1.14

 $\gamma=2 \text{ and } \phi=6$

Relative loss of wealth as a function of interest rate

Figure: Interest rate

Relative loss of wealth as a function of market price of risk

Figure: Market price of risk

Relative loss of wealth as a function of insurance pricing

Separated preferences ---- Time-additive preferences

Figure: Insurance pricing

Relative loss of wealth as a function of lifetime unceartainty

Separated preferences ····· Time-additive preferences

Figure: Lifetime unceartainty

Thank you!

Questions?