Introduction	Available data	Reserving	Estimation 000	Data application	Closing remarks

Disability insurance with information delays

Oliver Lunding Sandqvist

Industrial PhD student University of Copenhagen and PFA Pension

CONVENTION A Session: Danish Society of Actuaries

March 20, 2024

Introduction	Available data	Reserving	Estimation	Data application	Closing remarks

Overview

- 1 Introduction
- 2 Available data
- **3** Reserving
- 4 Estimation
- **5** Data application
- 6 Closing remarks

Talk is based on three papers (available on ArXiv):

- Transaction time models in multi-state life insurance
 - Jointly with Kristian Buchardt and Christian Furrer.
 - Published in SAJ 01/03/2023.
- Estimation for multistate models subject to reporting delays and incomplete event adjudication
 - Jointly with Kristian Buchardt and Christian Furrer.
- A multistate approach to disability insurance reserving with information delays

Why disability insurance?

Competitive market

Rapid changes/trends

Long cash flows

Discrepancy between theory and practice

Classic semi-Markov disability model

- Semi-Markov model $\{Y(t)\}_{t\geq 0}$ for insurance events.
- State space:

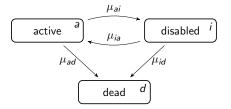


Figure 1: Illness-death model.

- Baseline covariates (age, gender, etc.) suppressed throughout, but could easily be included by conditioning on them.
- References: Janssen (1966), Hoem (1972), Haberman and Pitacco (1998), Helwich (2008), Christiansen (2012), and Buchardt et al. (2015).

Classic semi-Markov disability model

• Cash flow (specified in the insurance contract):

$$B(\mathrm{d} t) = \sum_{j} \mathbb{1}_{(Y(t-)=j)} b_j(t, U(t-)) \,\mathrm{d} t + \sum_{j\neq k} b_{jk}(t, U(t-)) N_{jk}(\mathrm{d} t).$$

- Counting processes $N_{jk}(t) = \#$ jumps from j to k before time t.
- Duration process U(t) = duration since last jump at time t.
- Interest rate: r(t).
- Present value: $PV(t) = \int_t^\infty e^{-\int_t^s r(v) \, \mathrm{d}v} \, \mathrm{d}B(s).$
- Prospective reserve:

$$V(t) = V_{Y(t)}(t, U(t)) = \mathbb{E}\Big[PV(t) \mid Y(t), U(t)\Big]$$

Classic semi-Markov disability model

- Maximum likelihood estimation (MLE) based on [0, t] observations discretized in 0 = t₀ < t₁ < ··· < t_M = t:
 - Occurrences and exposures:

$$egin{aligned} & O_{jk}(t_m) = N_{jk}(t_{m+1}) - N_{jk}(t_m), \ & E_j(t_m) = \int_{t_m}^{t_{m+1}} \mathbbm{1}\{Y(s-) = j\} \, \mathrm{d}s. \end{aligned}$$

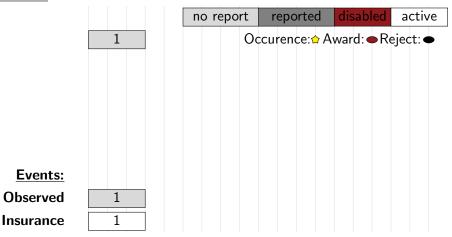
- Input $(O_{jk}(t_m))_{j,k,m}$ into glm as independent observations where $O_{jk}(t_m)$ has mean $\mu_{jk}(t_m, U(t_m), \beta)E_j(t_m)$ for regressor β .
- References: Lindsey (1995).

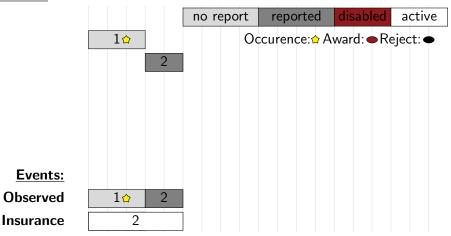
<u>Problem</u>: *Y* not fully observed due to reporting and processing delays.

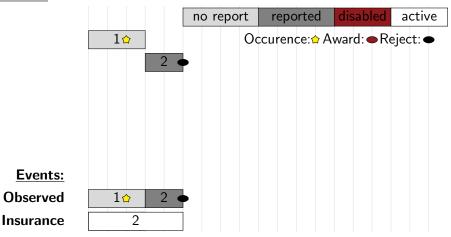
- Reserving: Can't compute V(t) if (Y(t), U(t)) not fully known at time t and can't assume B(t) is paid at time t.
- Estimation: Can't estimate using likelihood since occurrences and exposures not fully known at time *t*.

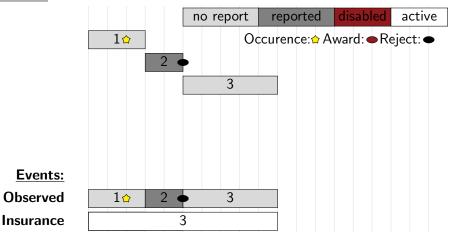
Content of presentation:

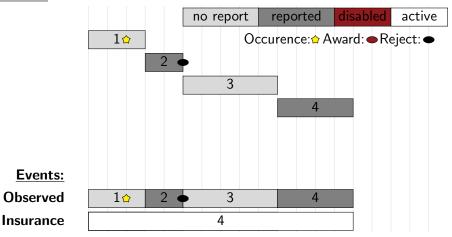
- Describe available data.
- Reserving proposal.
- Estimation proposal.
- Data application.

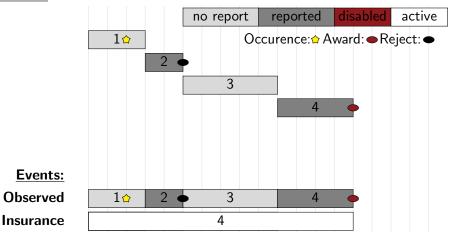


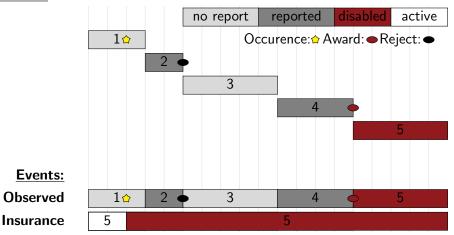












Disability insurance features

- Reasons for substantial reporting delays?
- Reasons for substantial adjudication processes?
- Disability insurance features:
 - $\bullet\,$ Long cash flows \sim life insurance.
 - $\bullet\,$ Long reporting and adjudication delays $\sim\,$ non-life insurance.
- Modeling goal: Retain attractive properties of multistate models while accommodating reporting delays and adjudication processes.

- Jump process model $\{Z(t)\}_{t\geq 0}$ for claim settlement process.
- State space:

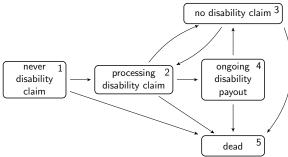


Figure 2: Claim settlement state space.

- Additional observed information:
 - The reported disability event time upon a transition into state 2.
 - What is awarded upon a transition out of state 2.

- Claim settlement reserve: $\mathcal{V}(t)$.
- Reserve $\mathcal{V}(t)$ differs from V(t) in two ways:
 - Reserve additionally to backpay (=lump sum due to delay in payout of benefits that the insured was eligible for).
 - **2** Reserve is a function of Z instead of (Y, U).

Proposed state-wise claim settlement reserves (simplified):

• State 1 (never disabiliy claim):

$$\mathcal{V}(t) = V_a(t) + \int_0^t V_i(s,0)I(t-s)\mu_{ai}(s) \mathrm{d}s.$$

• $I(t-s) = \mathbb{P}(\text{Disability reporting delay } > t-s).$

• State 2 & 3 (processing disability claim & no disability claim):

$$\mathcal{V}(t) = p(t)V_i(G(t), W(t)).$$

- $p(t) = \mathbb{P}(\text{Award after time } t)$.
- G(t) =Start of next disability period if awarded after time t.
- W(t) = Length of awarded disability period by time t.

Proposed state-wise claim settlement reserves (simplified):

• State 4 (ongoing disability payout): $V(t) = V_i(t, W(t))$.

• State 5 (dead):
$$\mathcal{V}(t) = V_d(t)$$
.

Introduction	Available data	Reserving	Estimation ●○○	Data application	Closing remarks
Estima	tion				

- What to estimate:
 - Classic transition hazards: $(s, u) \mapsto \mu_{jk}(s, u)$.
 - Reporting delay distribution: $s \mapsto I(s)$.
 - Award probabilities: $s \mapsto p(s)$.

• p(s) can be modeled as probability of hitting state 3 in Figure 3:

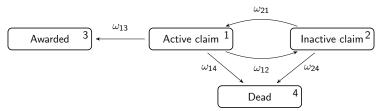


Figure 3: State space for adjudication.

Estimation procedure with time of analysis t:

- p(s): MLE for ω_{jk} and plug in.
- **2** I(s): MLE for the reporting delays conditional on the delay being less than $t T_{\text{disability}}$ and weighted with p(t).
- $\mu_{jk}(s, u)$: MLE based on the observed occurrences $O_{jk}^{obs}(t_m)$ and exposures $E_i^{obs}(t_m)$ after modifying as follows:

$$\begin{split} & O_{ai}^{\text{obs}}(t_m) \leftarrow O_{ai}^{\text{obs}}(t_m) p(t), \\ & O_{ia}^{\text{obs}}(t_m) \leftarrow O_{ia}^{\text{obs}}(t_m) (1-p(t)), \\ & E_a^{\text{obs}}(t_m) \leftarrow E_a^{\text{obs}}(t_m) (1-I(t-t_m)). \end{split}$$

Estimator properties

• Consistency and joint asymptotic normality follows by two-step M-estimation results.

• References: Newey and McFadden (1994).

Application to real data

- Anonymized and slightly altered real disability insurance data.
 - Disability exposure and occurrences.
 - Reactivation exposure and occurrences.
 - Disability reporting delays.
 - Adjudication exposure and occurrences.
- Time window [0, t] is [31/01/2015, 01/09/2019].
- Available on https://github.com/oliversandqvist/ Web-appendix-estimation-contamination.

Application: Estimation

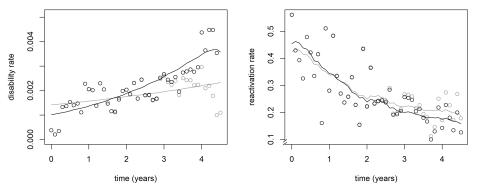


Figure 4: Fitted rates (lines) and occurrence-exposure rates (points) for the proposed method (black) and the naive method (gray). Disability rates are shown on the left and reactivation rates on the right.

Application: Reserving

Assume disability rate with 3 year coverage period

 $B(dt) = 1\{Y(t-) = i\}1\{t - U(t-) \le 3\}1\{Age_0 + t \le 67\} dt.$

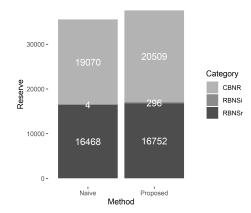


Figure 5: Portfolio level reserve decomposed by category.

Application: Reserving

- Proposed method leads to 5.7% increase in reserves compared to naive approach.
- Two large Danish insurers in 2019: Portfolio disability reserves of 1.4 billion USD and 2.6 billion USD.
- A 5.7% increase in these reserves is 80 million USD and 150 million USD respectively.

 Buchardt, K., Furrer, C. & Sandqvist, O. L. (2023a). Transaction time models in multi-state life insurance. *Scandinavian Actuarial Journal*, 974-999.

 Buchardt, K., Furrer, C. & Sandqvist, O. L. (2023b).
Estimation for multistate models subject to reporting delays and incomplete event adjudication.
Preprint. Available online.

[3] Buchardt, K., Furrer, C. & Sandqvist, O. L. (2023c). A multistate approach to disability insurance reserving with information delays.

Preprint. Available online.

Introduction	Available data	Reserving	Estimation	Data application	Closing remarks ●○
ЪС	тт				

References II

[4] Janssen, J. (1966).

Application des processus semi-markoviens à un probléme d'invalidité. *Bulletin de l'Association Royale des Actuaries Belges* **63**, 35–52.

[5] Hoem, J. (1972).

Inhomogeneous semi-Markov processes, select actuarial tables, and duration-dependence in demography.

In: Population Dynamics. New York: Academic Press, pp. 251-296.

[6] Haberman, S. & Pitacco, E. (1998).
Actuarial models for disability insurance.
Boca Raton: Chapman & Hall.

[7] Helwich, M. (2008).

Durational effects and non-smooth semi-Markov models in life insurance. PhD thesis, University of Rostock.

[8] Christiansen, M. (2012).
Multistate models in health insurance.
AStA Advances in Statistical Analysis 96, 155–186.

[9] Buchardt, K., Møller, T. & Schmidt, K. B. (2015). Cash flows and policyholder behaviour in the semi-Markov life insurance setup.

Scandinavian Actuarial Journal 2015, 660-688.

Introduction	Available data	Reserving	Estimation	Data application	Closing remarks ●○
ЪС	TT 7				

References IV

[10] J.K. Lindsey (1995).

Fitting parametric counting processes by using log-linear models. Journal of the Royal Statistical Society: Series C, 44(2):201–212.

W.K. Newey and D.L. McFadden (1994).
Large sample estimation and hypothesis testing.
The Handbook of Econometrics. Amsterdam: Elsevier.

Introduction	Available data	Reserving	Estimation	Data application	Closing remarks ⊙●

Thank you for your attention!