

Dr. Johannes Schupp (ifa Ulm)

Die nächste Generation des Pricings:

Interpretierbare Additive Neuronale Netze zur automatisierten Risikomodellierung

DAV-Herbsttagung in Mainz, November 2025

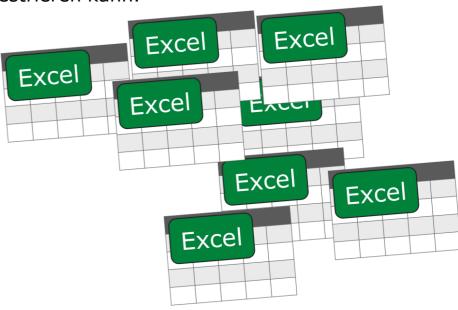
- Das ist ein typischer Aktuar: Martin
- Studiert Reine Mathematik
 - Schwerpunkt Stochastische Differenzialgleichungen,
 Numerik und Finanzmathematik
- Er lernt abstrakt zu denken
- Er lernt kreativ zu sein
- Er lernt präzise zu sein
- Er denkt strategisch

Martin im Excel-Dschungel

Martin fängt nach dem Studium dann bei der Pfefferminzia Lebensversicherung im Aktuariat an:

- Seine erste Aufgabe umfasst den Profittest des neuen Produkts. Des erfordert jetzt zusätzlich die Berücksichtigung von stochastischen Pfaden.
- Martin hat ein Excel bekommen, das lässt sich kaum öffnen und jetzt soll er es auch noch 10.000 Pfade durchrechnen.

- Seine Chefin erzählt ihm auch schon mal von seiner nächsten Aufgabe.
- Wie jedes Jahr steht die Gewinnzerlegung an.
- Das hat die letzten 20 Jahre ein Kollege gemacht und dieser ist nun im Ruhestand.
- Martin ist am Verzweifeln, wie er die vielen Excel-Tabellen aus unterschiedlichen Quellen sicher und einigermaßen schnell orchestrieren kann.



KI macht Martins Arbeit interessanter

- Martin ist ein Cleverle und nutzt nun natürlich KI.
 - Er überführt das Profittest-Excel innerhalb von Minuten nach Python.
 - Martin konzentriert sich auf verbliebene fachliche Fehler und sichert die Korrektheit.
 - Die Erweiterung auf stochastische Pfade funktioniert gut.
 - Laufzeit und Dateigröße ermöglichen ein komfortables Arbeiten.

- Er strukturiert die verschiedenen Quellen für die Gewinnzerlegung in einer Pipeline;
 - mit KI übersichtlich und verständlich.
- Die manuelle Übertragung von Daten wird automatisiert und er implementiert Checks und Plausis.
- Die Anzahl der Excel-Datei hat sich deutlich reduziert. Die verbliebenen Excel-Dateien haben klar strukturierte Aufgaben.
- Der Zeitdruck lässt nach er hat Zeit die Ergebnisse zu analysieren.
- Was macht er nun? Er spielt seine Stärken aus: Er ist präzise, denkt strategisch und findet kreative neue Lösungen.
- Weiterentwicklungen in der KI aus anderen Bereichen verändern den Alltag von Aktuaren und zwar zum Besseren!
- Heute und auch künftig werden weitere Themen aus dem Arbeitsfeld der Aktuare betroffen sein.

Blick über den Tellerrand hinaus notwendig!

Eine aktuelle Weiterentwicklung, die uns begeistert, betrifft das klassische Pricing in der S/U Versicherung.

Status Quo – was wird bisher gemacht?

GLM / GAM	Black-Box
 Iteratives Vorgehen, findet man eine gute und stabile Lösung? aufwändiges Ausprobieren GLMs mit Regularisierung systematisch, klare Definition von Strukturen notwendig 	 Neuronale Netze, Bäume überzeugende Prognosen nicht interpretierbar, Wartung schwierig, anfällig für Overfitting Was ist, wenn jemand Fragen dazu stellt?

Wir stellen nun eine neue Modellklasse vor, die beides kombiniert:

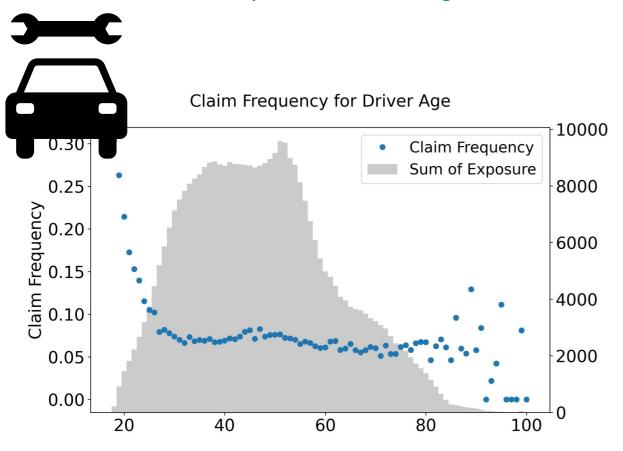
- Genauere Schätzung der Schadenhäufigkeit (wie ein Black-Box-Modell)
- Interpretierbarkeit wie ein GLM / GAM

Damit versteht man das gezeichnete Risiko besser → genauerer Preis

Grundlage z.B. für passgenaue Profitabilitäts-Optimierung

Datensatz für die Illustration

Französische Kfz-Haftpflichtversicherung



- anonymisierter Frequenzschaden-Datensatz eines Französischen Versicherers (freMTPLfreq)
- sehr bekannter frei zugänglicher Datensatz, der häufig für die Darstellung von Modellen verwendet wird
 - Wir können damit die Performance von vielen Modellen vergleichen und eigene Modelle schnell einordnen.
 - 9 erklärende Merkmale
 - auch in K typischerweise verwendete Merkmale wie Alter, Fahrzeugalter, Fahrzeugstärke
- Es funktioniert genauso auf echten "deutschen" Datensätzen!
- auch für andere Schadenarten!

Datensatz für die Illustration

Claim Frequency for Driver Age

Was ist das Ziel guter Risikomodellierung?
Was ist der isolierte Effekt des Merkmals

(Interpretierbarkeit)?

abhängig von Modellwahl beantwortbar

Im GLM/GAM: Zuordnung des Effekts zu jedem Merkmal

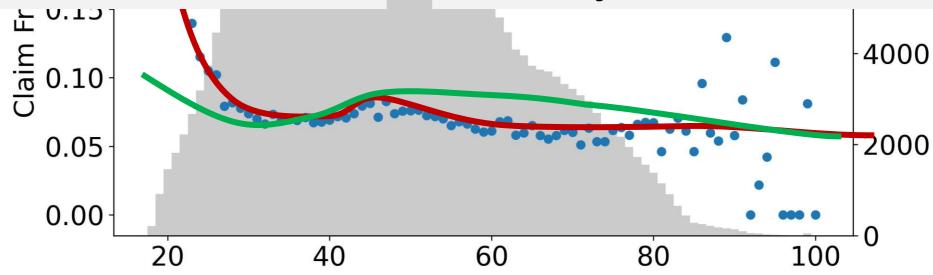
$$g(\mu(x)) = \beta_0 + \langle \beta, x \rangle$$

Schadenhäufigkeiten sollen gut getroffen werden (Performance)

Typisches Maß: Poisson Devianz Loss:

$$\frac{2}{n} \left[\sum \widehat{y}_i - \sum y_i + \sum \log \left(\frac{y_i}{\widehat{y}_i} \right) \cdot y_i \right]$$

- Exposure-Gewichtung
- Null Devianz gesamt: 0.25236

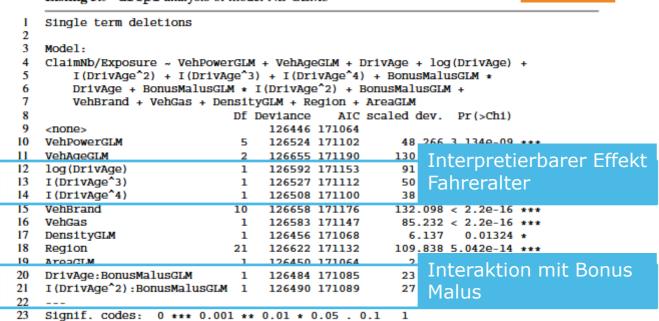


Modellvarianten

Klassische interpretierbare Modelle

- Gutes GLM (Wüthrich und Merz (2021), GLM3)
 - mit Feature Engineering (log Transformation, höhere Momente, Interaktionen)
 - Bekommt man das noch besser? Ja, aber wie?

Listing 5.9 drop1 analysis of model NB GLM3



Wüthrich M. V. & Merz M. (2021). Statistical foundations of actuarial learning and its applications. SSRN Manuscript ID 3822407

Table 2. In-sample and out-of-sample losses on the real MTPL data example.

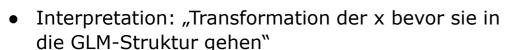
	Poisson deviance losses in 10^{-2}	
	In-sample on $\mathcal L$	Out-of- sample on ${\cal T}$
(a) null model (bias β_0 only)	25.213	25.445
(b) FFN network	23.764	23.873
(c) LocalGLMnet	23.728	23.945
(d) reduced LocalGLMnet	23.714	23.912
(e) Poisson GLM3	24.084	24.102
(f) Categorical Embedding network	23.690	23.824
(g) Nagging network	23.691	23.783

Richman, R. and Wüthrich, M. V. (2022) 'LocalGLMnet: interpretable deep learning for tabular data', Scandinavian Actuarial Journal, 2023(1), pp. 71–95. doi: 10.1080/03461238.2022.2081816.

Modellvarianten

nicht-interpretierbare Neuronale Netze

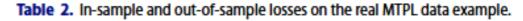
- FFN network (Fully-connected Feedforward Netz)
 - 3 Layer (20,15,10) Neuronen
 - $g(\mu(x)) = \beta_0 + \langle \beta, \mathbf{z}^{3:1}(\mathbf{x}) \rangle$



- vgl. GAM Modell
- ohne Hidden Layer → lineare Strukturen
- ein Hidden Layer → quadratische Terme (inkl. Interaktionen)
- LocalGLMnet: $\beta_0 + \langle \boldsymbol{\beta}(\boldsymbol{x}), \boldsymbol{x} \rangle$
 - Interpretation schon besser; Koeffizientenvektor $\beta(x)$, verändert sich abhängig von Belegung des gesamten Vektors x

- Embedding Layer für kategoriale Größen
- Sehr gutes, aber nicht mehr interpretierbares Netz

- Nagging network
 - Network Aggregation
 - vereinfacht: Ensemble aus 1.600 Netzen



	Poisson deviance losses in 10 ⁻²	
	In-sample on $\mathcal L$	Out-of- sample on ${\cal T}$
(a) null model (blas β_0 only)	25.213	25.445
(b) FFN network	23.764	23.873
(c) LocalGLMnet	23.728	23.945
(d) reduced LocalGLMnet	23.714	23.912
(e) Poisson GLM3	24.084	24.102
(f) Categorical Embedding network	23.690	23.824
(g) Nagging network	23.691	23.783

Umfrage

Würden Sie für **kritische Entscheidungsfindungen** (z.B. Risikomodell fürs Pricing, Kundenverhalten fürs Risikomanagement) interpretierbare Modelle (z.B. GLM) oder nicht-interpretierbare Modelle (z.B. Neuronales Netz / Boosting) bevorzugen??

- Interpretierbare
- Nicht-interpretierbare
- Kombination aus beiden Modellen

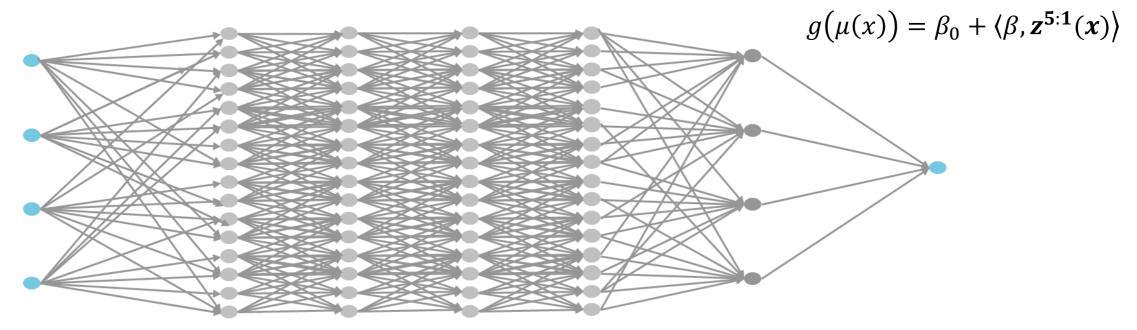
Eine neue Modellklasse

- Wir stellen nun mit Additiven Neuronalen Netzen eine Modellklasse für die aktuarielle Anwendung vor, die
 - die Stärke von neuronalen Netzen zur Identifikation funktionaler
 Zusammenhänge optimal ausnutzt, um damit
 - die Risikofaktoren für jedes Merkmal interpretierbar ausfindig zu machen,
 - die Stärken der Optimierungsalgorithmen von Neuronalen Netzen (Keras & Tensorflow) optimal auszunutzen,
 - eine nahtlose Einbindung in die bekannte ML-Optimierung mit Exposure, Poissonverteilung, usw. zu ermöglichen
 - durch geschickte Architektur ein optimales GLM findet.

Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R., & Hinton, G. E. (2021). Neural additive models: Interpretable machine learning with neural nets. Advances in neural information processing systems, 34, 4699-4711.

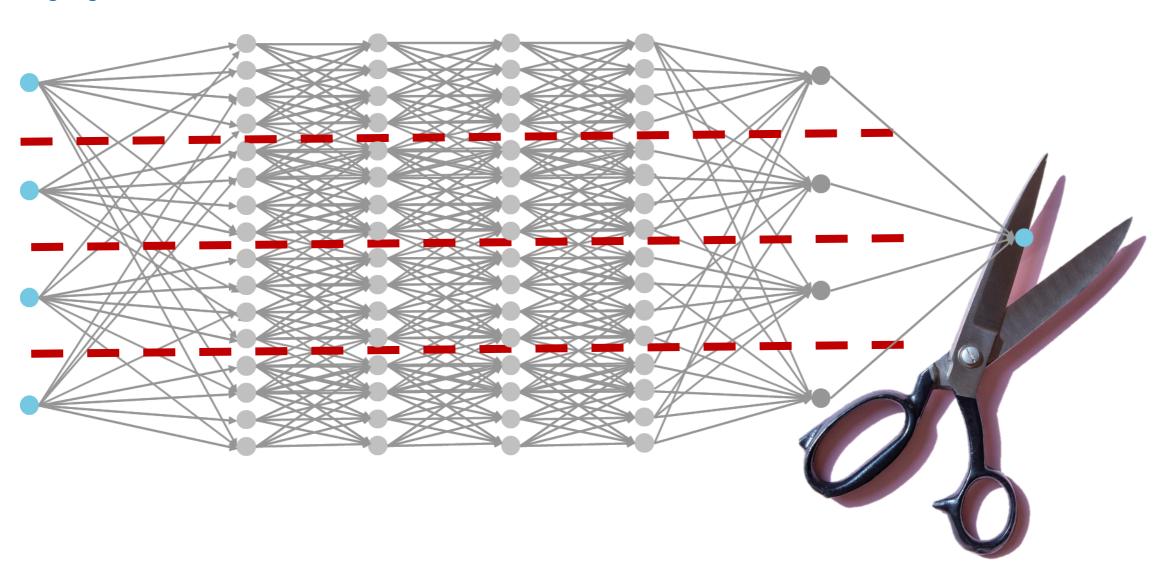
Recap: Was waren nochmal Neuronale Netze?

- Wie sehen Neuronale Netze aus?
 - Komplexe, mehrdimensionale Kombination der Eingaben für gute Prognosen der Ausgaben

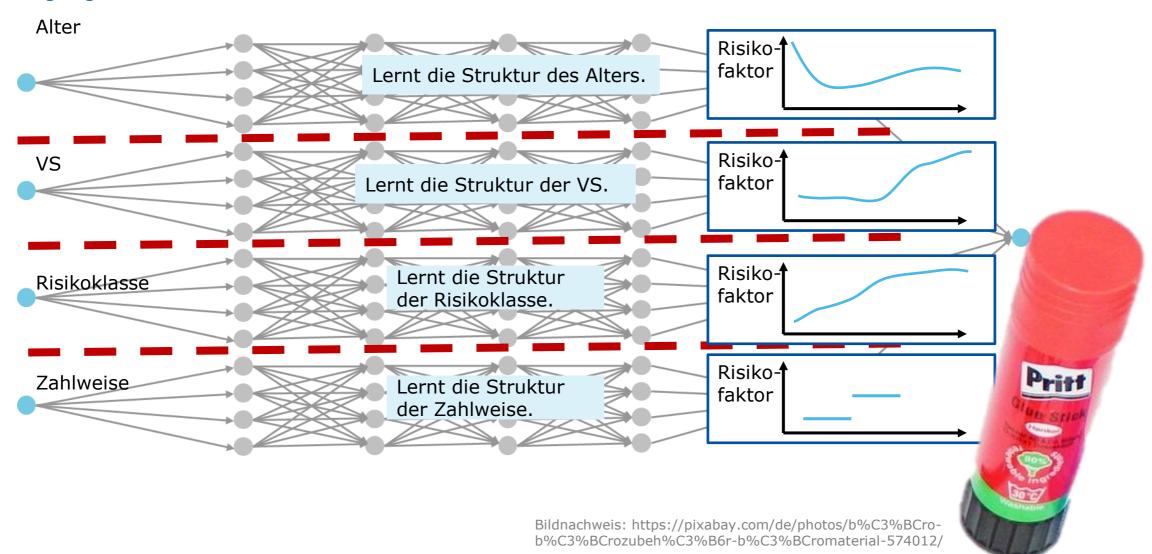


- Für das (20/15/10) FFN-Netzwerk sind 686 Parameter zu schätzen.
 - Optimierung komplex, hierfür steht mit Keras / Tensorflow eine high-end Optimierung zur Verfügung.
 - Zahlreiche Parameter und Freiheitsgrade passend zum Problem konfigurierbar.

Übergang zum Additiven Neuronalen Netz



Übergang zum Additiven Neuronalen Netz



Im Detail: Additive Neuronale Netze

• Je Merkmal wird ein eigenes kleines Neuronales Netz entwickelt, das sich nahtlos in ein "großes" Neuronales Netz einbettet.

- $g(\mu(x)) = \beta_0 + \langle \beta, \mathbf{f}(\mathbf{x}) \rangle$
- Analoge Strukturgleichung wie ein GAM:
 - $f(x) = f_1(x_1) + f_2(x_2) + \dots + f_m(x_m)$
- simultane und gleichwertige Schätzung aller Komponenten
- Freiheitsgrade in der Ausgestaltung der einzelnen Netze
 - Tiefe / Aktivierungsfunktionen, usw.
 - Optimierung über Kreuzvalidierung und langsamem Lernen
- Einfaches Baukastenprinzip:
 - Interaktionen durch Kombination ausgewählter Merkmale
 - Exposure-Gewichtung
 - andere Zielgrößen und Verteilungen

Ergebnisse

Im Detail: Additive Neuronale Netze

Identische Aufteilung in Training und Test gewählt wie Richman und Wüthrich (2022) um Vergleichbarkeit der Ergebnisse herzustellen.

Performance In-Sample (Training): 23.797

Performance Out-of-sample (Test): 23.802

Claim Frequency for Driver Age

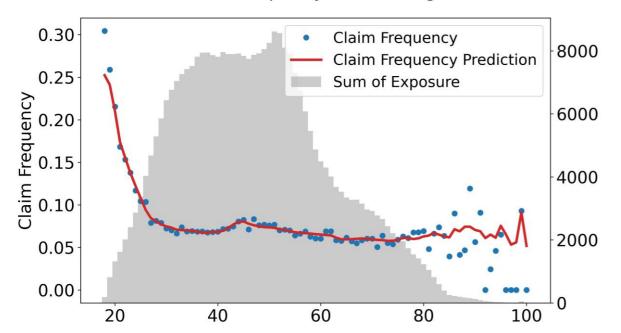


Table 2. In-sample and out-of-sample losses on the real MTPL data example.

	Poisson deviance losses in 10 ⁻²		
-	In-sample on $\mathcal L$	Out-of- sample on T	
(a) null model (blas β_0 only)	25.213	25.445	
(b) FFN network	23.764	23.873	
(c) LocalGLMnet	23.728	23.945	
(d) reduced LocalGLMnet	23.714	23.912	
(e) Poisson GLM3	24.084	24.102	
(f) Categorical Embedding network (g) Nagging network	23.690 23.691	23.824 23.783	

Richman, R. and Wüthrich, M. V. (2022) 'LocalGLMnet: interpretable deep learning for tabular data', Scandinavian Actuarial Journal, 2023(1), pp. 71-95. doi: 10.1080/03461238.2022.2081816.

> **Die Performance liegt auf dem Niveau eines fortgeschrittenen** und sehr komplexen **Neuronalen Netzes!**

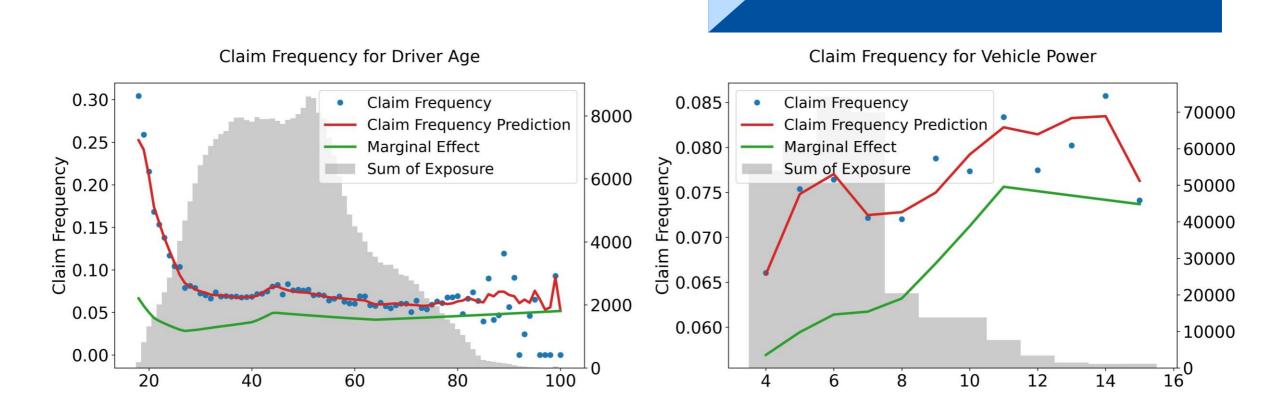
Die Interpretierbarkeit von

Additiven Neuronalen Netzen liegt auf dem Niveau eines GLM / GAM

Ergebnisse

Im Detail: Additive Neuronale Netze

Interpretierbare Risikofaktoren werden automatisiert gefunden.



Schätzunsicherheit in Modellen

Im Detail: GLM

Ausgangslage GLM3 (Wüthrich und Merz (2021))

```
Single term deletions
    Model:
    ClaimNb/Exposure ~ VehPowerGLM + VehAgeGLM + DrivAge + log(DrivAge) +
        I(DrivAge^2) + I(DrivAge^3) + I(DrivAge^4) + BonusMalusGLM *
        DrivAge + BonusMalusGLM * I(DrivAge^2) + BonusMalusGLM +
        VehBrand + VehGas + DensityGLM + Region + AreaGLM
                               Df Deviance
                                              AIC scaled dev. Pr(>Ch1)
    <none>
                                     126446 171064
    VehPowerGLM
                                    126524 171102
                                                        48.266 3.134e-09 ***
    VehAgeGLM
                                    126655 171190
                                                       130.070 < 2.2e-16 ***
    log(DrivAge)
                                    126592 171153
                                                        91.057 < 2.20-16 ***
    I (DrivAge^3)
                                    126527 171112
                                                        50.483 1.202e-12 ***
    I (DrivAge^4)
                                    126508 171100
                                                        38.381 5.820e-10 ***
    VehBrand
                                    126658 171176
                                                       132.098 < 2.20-16 ***
    VehGas
                                    126583 171147
                                                        85.232 < 2.20-16 ***
    DensityGLM
                                    126456 171068
                                                        6.137 0.01324 *
    Region
                                    126622 171132
                                                       109.838 5.042e-14 ***
    AreaGLM
                                    126450 171064
                                                        2.411 0.12049
    DrivAge:BonusMalusGLM
                                    126484 171085
                                                        23.481 1.262e-06 ***
21
    I (DrivAge^2):BonusMalusGLM 1
                                    126490 171089
                                                        27.199 1.836e-07 ***
22
    Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Wüthrich M. V. & Merz M. (2021). Statistical foundations of actuarial learning and its applications. SSRN Manuscript ID 3822407

• Problem:

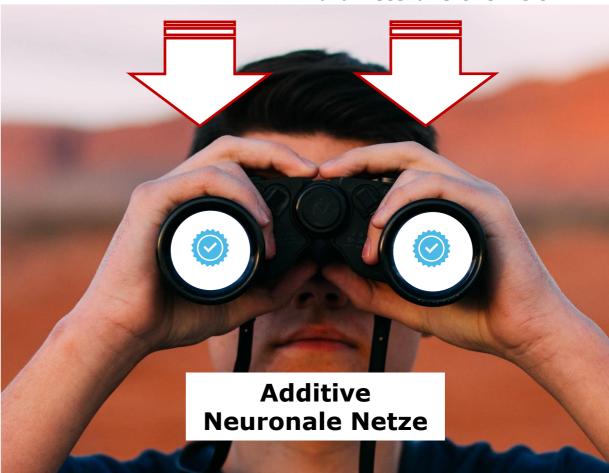
- Unsicherheitsbewertung im GLM irgendwie nicht griffig.
 Natürlich gibt es für kleine Exposure auch hier (große)
 Unsicherheit
- Unsicherheit setzt sich zusammen aus:
 - Parameterunsicherheit
 - Modellunsicherheit

Schätzunsicherheit in Modellen

Im Detail: Additive Neuronale Netze

- Im Gegensatz zum GLM ist das Modell nun offensichtlich mit einer höheren Unsicherheit verbunden
 - GLM: fixer Modellrahmen (der aber eigentlich ebenfalls unsicher ist) → das wird ignoriert
 - Additives Neuronales Netz: flexibler Modellrahmen:
 Unsicherheitsbetrachtung greift das auf.
- Wie geht man damit um?
 - Der Fit bei Neuronalen Netzen hat eine Abhängigkeit von den initialen Gewichten des Netzes – klassischer Lösungsansatz:
 - Mehrfaches Kalibrieren mit unterschiedlichen Seeds zur Einschätzung dieser Parameterunsicherheit.
 - Es sind unweigerlich auch ein paar Seeds dabei, die zu nicht-optimalen Ergebnissen führen.

Modellunsicherheit Parameterunsicherheit

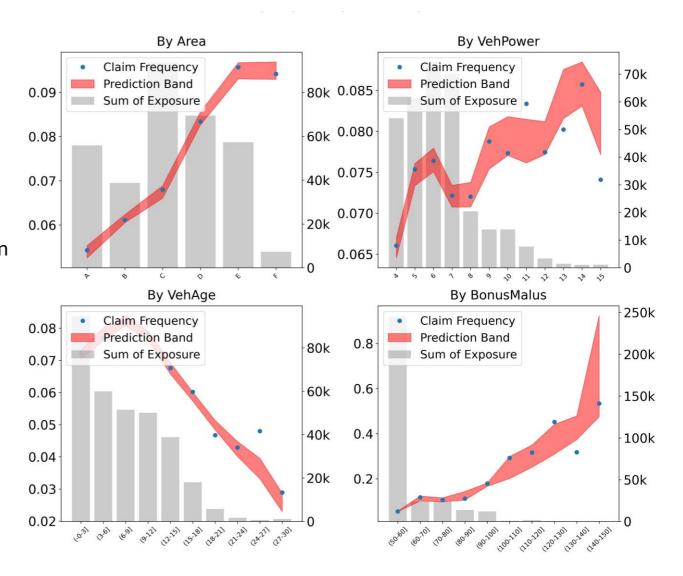


Bildnachweis: https://pixabay.com/de/photos/boot-horizont-fernglas-meer-ozean-4220204/

Schätzunsicherheit in Modellen

Im Detail: Additive Neuronale Netze

- Für jeden Seed analysierbar:
 - Prognosegüte auf den Trainingsdaten/Testdaten
 - Ableitung der Randeffekte einzelner Merkmale
- Vorteile:
 - Ableiten, wie stabil die Gesamtprognose ist.
 - Nutzen für die Profitabilitätssteuerung: In welchem Schwankungsbereich werden die Schäden sein?
 - Ableiten, wie stabil der Effekt einzelner Merkmale ist.
 - Wo lohnt sich weiteres Tuning?
 - Erkenntnisse für die Tarifmodellierung wo darf gedämpft werden?



Vergleich und Key-Features

Zusammenfassung: Additive Neuronale Netze vs. (GLM / Neuronales Netz)

NN •	Additives Neuronales Netz	GLM
	Verarbeitung vieler Vertragsinformationen	
	erkennt vielfältige Strukturen innerhalb der Kovariablen selbständig	X
X	Aufwand für die Erstellung	X
X	Interpretierbarkeit	
	Prognosegüte	?
X	Ist eigentlich ein GLM?	
X	Validierung und Monitoring	

Was benötigt man dazu?

Zutaten für das Additive Neuronale Netz

Keine spezielle Software – keine Lizenz

Python – Installation (sollten 2025 alle haben)

Man kann damit morgen loslegen!

Wissen und Erfahrung im Umgang mit dem Modell

Welche Parameter sind entscheidend? Welche Einstellungen funktionieren gut?

Erfahrungen sammeln – Erfahrungen austauschen



matik o

Fazit

Zusammenfassung

- Weiterentwicklungen in der KI aus anderen Bereichen verändern den Alltag von Aktuaren und zwar zum Besseren!
 - Diese Entwicklungen im Blick zu halten und zu integrieren falls sinnvoll, ist wichtiger denn je!
- Bisheriges iteratives Ausprobieren in der Risikomodellierung hat hoffentlich zu einem guten Modell geführt. War es das Bestmögliche?
- Wir haben diese Methode im Vortrag auf einen öffentlichen Datensatz angewandt, um den Vergleich für viele Modelle ziehen zu können.
 - Wir haben diese Methode auch auf in Deutschland üblicherweise für das Pricing in K verwendete Daten angewandt. Die Ergebnisse sind die gleichen.
- Bei der Bildung der Modelle müssen die Stellschrauben von Neuronalen Netzen sorgfältig gewählt werden.
 - Verteilung, Exposure, Initialisierung der Gewichte, Optimierung, usw. alles konfigurierbar und machbar

Die Interpretierbarkeit von Additiven Neuronalen Netzen liegt auf dem Niveau eines GLM / GAM

Die Performance liegt auf dem Niveau eines fortgeschrittenen und sehr komplexen Neuronalen Netzes!

Kontakt

Dr. Johannes Schupp j.schupp@ifa-ulm.de

