

ulm university universität **UUUIM**

Design and Incentives of Sustainability-Linked Bonds

6th Fudan-Ulm Symposium on Finance and Insurance An Chen, Maria Hinken & Gunter Löffler | 5th - 6th September 2024

| Maria Hinken | 5th - 6th September 2024

Motivation

Motivation

Page 2

- United Nations (UN) Climate Change Conference
- ▶ 17 Sustainable Development Goals of UN
- \rightarrow Sustainability and, especially, environmental actions are becoming increasingly important in the current time
- A lot of financial instruments have emerged to promote environmentally friendly and sustainable incentives
 - First green bond was issued by European Investment Bank in 2007
 - Recent addition: Sustainability-linked bonds (SLBs)
 - Payments of SLB depend on achievement of sustainability performance targets (SPTs) and key performance indicators (KPIs)
 - Most commonly: Coupon step-up if SPTs are not achieved by KPI

SUSTAINABLE GOALS

Motivation: Example SLB

Deutsche Post AG (ISIN XS2644423035)

- Issue date: 2023
- Maturity: 2033
- Regular coupon: 3.375% (paid annually)
- Key Performance Indicators (KPIs)
 - ▶ KPI 1: GHG Emissions (Scope 1 + Scope 2)
 - KPI 2: GHG Emissions (Scope 3)
- Examination date: 2030
- Sustainability Performance Targets (SPTs)
 - SPT 1: 42% reduction of KPI 1 compared to 2021
 - ▶ SPT 2: 25% reduction of KPI 2 compared to 2021
- Penalty payment: Coupon step-up +0.25% from 2031 to 2033 if one or two targets are missed or KPI is not reported

Motivation: Common views

- Ambition of SPTs and the size of coupon step-ups are viewed by market participants as indicator of SLB's contribution to sustainability
 - Sustainability targets should "represent a material improvement in the respective KPIs" (ICMA (2023), p.3)
 - Rating agencies (e.g., Sustainalytics or Moody's) evaluating ambition of sustainability targets when providing second party opinions on SLBs
 - "In the case of a coupon step-up, its level should be high enough that the achievement of an SPT has a meaningful influence on the issuer's sustainability journey and credit profile." (AXA (2022), p.6)
- Research Questions:
 - Do more ambitious targets or higher penalties indicate a higher commitment of the issuer?
 - Will an SLB create incentives to do more for the environment?
 - Alternatively, can the company pursue this with the sole intention of lowering its financing costs?

Motivation

- Research approach: We use risk-neutral pricing and consumption-based ► capital asset pricing model (CCAPM) for pricing SLBs to answer the research questions
 - Valuation of SLBs through risk-neutral pricing and CCAPM to determine financing costs
 - Systematic assessment of how financing costs vary with features of the SLB
- ► Literature overview:
 - Richardson (2022), Kölbel & Lambillon (2022), Ul Hag & Doumbia (2022): Empirical studies related to SLBs
 - Berrada et al. (2023): One-period model in which firms decide whether to exert effort towards greater sustainability
 - Erlandsson & Mielnik (2022), Erlandsson et al. (2022): Employ risk-neutral pricing of SLB's

Overview

Payoff structure and valuation

Numerical analysis

Robustness check

Outlook

Conclusion

- Finite time horizon T > 0
- ► Face value F > 0
- ▶ Payment dates $\underline{\underline{T}} := \{0 < t_1 < \cdots < t_n := T\}$

Coupon payments consist of two components

- 1. Constant payments: $c_0 \ge 0$
- 2. Payment linked to achievement of sustainability targets
 - Reward payment (e.g., coupon step-down) if sustainability targets are achieved by key performance indicator
 - Penalty payment (e.g., coupon step-up) if sustainability targets are not achieved by key performance indicator

► Key Performance Indicator (KPI):

$$I_t = I_0(1 + \alpha t) + \sigma W_t$$

with $\alpha \in \mathbb{R}$ constant, volatility $\sigma > 0$ and risk driver W standard Brownian motion under real-world measure \mathbb{P}

Sustainability Performance Targets (SPTs):

$$B_t = B_0(1+gt)$$

with $B_0, g \in \mathbb{R}$

- Most commonly used KPI: GHG emissions
 - Aim: reduce GHG emissions over time
 - $ightarrow B_0>0$ and g<0 (or $B_0<0$ and g>0)

- ► Second component of coupon payment: coupon step-up as penalty payment
 - Examination dates $0 < \tau_1 < \ldots < \tau_m \leq T$
 - Situation: aim to reduce KPI over time period
 - ▶ $I_{\tau_i} \leq B_{\tau_i} \Rightarrow$ SPTs by KPI achieved \Rightarrow Coupon payment c_0 at the following payment dates (no penalty payment)
 - ▶ $I_{\tau_i} > B_{\tau_i} \Rightarrow$ SPTs by KPI not achieved \Rightarrow Coupon payment c_0 and additional penalty payment $\Delta c_i > 0$ at the following payment dates
- Cash flow at payment time $t \in \underline{T}$ of SLB: ►

$$C_t := \begin{cases} c_0 & \text{if } t < \tau_1, \\ c_0 + \Delta c_i \mathbb{1}_{\{I_{\tau_i} > B_{\tau_i}\}} & \text{if } \tau_i \le t < \tau_{i+1}, \ i \in \{1, \dots, m\} \\ F \mathbb{1}_{t=T} + c_0 + \Delta c_m \mathbb{1}_{\{I_{\tau_m} > B_{\tau_m}\}} & \text{if } \tau_m \le t \end{cases}$$

Exemplary payoff structure of an SLB:

Case 1: Targets are missed at both examination dates

Case 3: Targets are achieved at the first examination date but not at the second

Legend:

Regular coupon payments

Case 2: Targets are missed at the first examination date but not at the second

Case 4: Targets are achieved at both examination dates

Penalty coupon step-up payments

Risk-neutral price of SLB

Price: r risk-free interest rate

$$P = \sum_{t \in \underline{\underline{T}}} e^{-rt} \mathbb{E}_{\mathbb{Q}}[C_t]$$

= $e^{-rT}F + \sum_{t \in \underline{\underline{T}}} c_0 e^{-rt} + \sum_{i=1}^{m-1} \sum_{\substack{t \in \underline{\underline{T}} \\ \tau_i \leq t < \tau_{i+1}}} \Delta c_i e^{-rt} \Phi(-d(\tau_i))$
+ $\sum_{\substack{t \in \underline{\underline{T}} \\ \tau_m \leq t}} \Delta c_m e^{-rt} \Phi(-d(\tau_m))$

with $d(t) := \frac{B_t - I_0(1 + \alpha t)}{\sigma \sqrt{t}} + \lambda \sqrt{t}$, where λ is market price of risk of W and \mathbb{Q} the risk-neutral measure given λ

Interpretation:

- Price of corresponding regular coupon-bearing bond
- Additional price due to penalty payments

Yield of SLB

Yield y of the SLB (i.e., the financing costs) is defined through

$$\sum_{t\in\underline{\underline{T}}}e^{-rt}\mathbb{E}_{\mathbb{Q}}[C_t]=\sum_{t\in\underline{\underline{T}}}e^{-yt}\mathbb{E}_{\mathbb{P}}[C_t]$$

with $\mathbb{P}(I_t > B_t) = \Phi(- ilde{d}(t))$, where $d(t) = ilde{d}(t) + \lambda \sqrt{t}$

$\blacktriangleright \ \lambda > 0 \Rightarrow y > r$

- Higher return compared to risk-free investment
- Explanation: Penalty payment are subject to systematic risk

 $\blacktriangleright \ \lambda < 0 \Rightarrow y < r$

- Lower return compared to risk-free investment
- Explanation: Hedge of relevant risk or preference for sustainability

Base case parameter values

_

Parameter	Symbol	Values
Face value	F	100
Maturity	Т	10
Payment date	$(t_1,, t_{10})$	(1,,10)
Coupon payment	<i>c</i> ₀	$3\% \cdot F = 3$
Risk-free rate	r	3%
KPI initial value	<i>I</i> ₀	1000
KPI reduction rate	α	-4%
KPI volatility	σ	200
SPT initial value	B_0	1000
SPT rate	g	-4%
Market price of risk	λ	{-0.35,0.35}
Examination date	au	4.75
Penalty payment	Δc	0.5

Yield y (financing costs) w.r.t. SPT reduction rate g

- Lower $g \Rightarrow$ Higher ambition of sustainability targets
- ► λ > 0: More ambitious targets may be set by firm only to lower financing costs.

Yield y (financing costs) w.r.t. penalty payment Δc

- ► Sustainability targets ambitious enough ⇒ Increase in penalty payment without material increase in financing costs
- $\blacktriangleright \ \lambda <$ 0: Higher penalty payments lead to lower financing costs

Yield y (financing costs) w.r.t. KPI reduction rate α

• Higher $\alpha \Rightarrow$ Lower expected sustainability performance

Situations: Reduction of financing costs by reduction of sustainable effort

Robustness check: CCAPM approach

Consider a representative agent with

- \blacktriangleright Subjective discount factor β ,
- Utility *u* given by a power utility function ►

$$u(x):=\frac{x^{1-\gamma}}{1-\gamma}$$

with risk aversion coefficient $\gamma \in \mathbb{R}_+ \setminus \{1\}$, and

► Consumption level x_t at time t given by

$$\ln(x_t) = \ln(x_0) + \mu_x t + \sigma_x W_t^x$$

with initial consumption level x_0 , expected log consumption growth $\mu_x \in \mathbb{R}$, volatility of log consumption growth $\sigma_x > 0$ and risk driver W^x given by a Brownian motion under \mathbb{P} correlated with factor $\rho \in [-1, 1]$ to KPI's risk driver W.

Robustness check: CCAPM approach

Price of SLB:

$$P^{\text{CCAPM}} = \sum_{t \in \underline{\underline{T}}} \beta^{t} \mathbb{E}_{\mathbb{P}} \left[\frac{u'(x_{t})}{u'(x_{0})} C_{t} \right]$$
$$= F \tilde{\beta}^{T} + c_{0} \sum_{t \in \underline{\underline{T}}} \tilde{\beta}^{t} + \sum_{i=1}^{m-1} \Delta c_{i} \Phi(-\hat{d}(\tau_{i})) \sum_{\substack{t \in \underline{\underline{T}} \\ \tau_{i} \leq t < \tau_{i+1}}} \tilde{\beta}^{t}$$
$$+ \Delta c_{m} \Phi(-\hat{d}(\tau_{m})) \sum_{\substack{t \in \underline{\underline{T}} \\ \tau_{m} \leq t}} \tilde{\beta}^{t},$$

with
$$ilde{eta}:=eta e^{-\gamma\mu_{x}+rac{1}{2}\gamma^{2}\sigma_{x}^{2}}$$
 and $\hat{d}(t):= ilde{d}(t)+\gamma\sigma_{x}
ho\sqrt{t}$

 \rightarrow Similar structure as under the risk-neutral pricing approach

▶ Yield of SLB:
$$P^{\text{CCAPM}} = \sum_{t \in \underline{T}} e^{-yt} \mathbb{E}_{\mathbb{P}} [C_t]$$

Yield y w.r.t. SPT reduction rate g

 \blacktriangleright Parameter: $\sigma_{x}=$ 4%, $\mu_{x}=$ 1%, eta= 0.99005 and $\gamma=$ 10

• The results remain stable regarding the pricing method (also for α and Δc).

Robustness check: Default

- We model default risk to analyze its impact on the financing costs ►
- Simplifying assumption: Occurrence of default event is triggered by an ► external event beyond firm's control.
- The results are similar to the non-defaultable case.

Outlook

- We incorporate effort exerted by the firm to improve their sustainability performance into the model and analyze a decision problem of the firm issuing an SLB
- The more effort is exerted by the firm, ...
 - ... the better the firm's sustainability performance.
 - ... the higher the costs for the firm and, thus, the lower the firm's assets.
 - ... it is more likely that the SPTs are achieved by the KPI and, thus, the lower the firm's liabilities regarding the SLB holders.
- Decision problem: Maximize firm's expected utility of its financial and ► sustainable performance regarding the exerted effort
- Questions to answer: ►
 - Does an SLB incentivize a firm to improve their sustainability performance?
 - ► Does the firm benefit from issuing an SLB?

Conclusion

- We value SLBs using risk-neutral and CCAPM pricing approach to ► determine SLB's financing costs
- More ambitious targets/higher penalties reliable indicator of greater ► commitment to sustainability?
 - More ambitious targets may lead to lower financing costs (non-monotonic behavior)
 - Higher penalty payments may lead to lower financing costs ($\lambda < 0$)
- Financial incentives for issuer to do more for the achievement of ► sustainability goals?
 - Reduction of planned effort before issue may lead to lower financing costs (non-monotonic behavior)

Thank you for your attention!

References I

- AXA. 2022. Sustainability-linked bonds: Our framework of assessment. AXA Investment Managers,. https://www.axa-im.com/document/4451/view.
- Berrada, Tony, Engelhardt, Leonie, Gibson, Rajna, & Krueger, Philipp. 2023. The Economics of Sustainability Linked Bonds. Swiss Finance Institute Research Paper, 22-26.
- Erlandsson, Ulf, & Mielnik, Stephanie. 2022. An option pricing approach for sustainability-linked bonds. Anthropocene Fixed Income Institute, https://img1.wsimg.com/blobby/go/ 946d6aac-e6cc-430a-8898-520cf90f5d3e/SLB%200ption%20Pricing%20Paper_Nov%202022.pdf.
- Erlandsson, Ulf, Mielnik, Stéphanie, Richardson, Josephine, & Rimaud, Cedric. 2022. Notes on Risk-Neutral Pricing of SLBs and Step-down Structures. Available at SSRN 4258897.
- ICMA. 2023. The sustainability-linked bond principles. International Capital Market Association,. https://www.icmagroup.org/assets/documents/Sustainable-finance/2023-updates/ Sustainability-Linked-Bond-Principles-June-2023-220623.pdf.
- Kölbel, Julian F, & Lambillon, Adrien-Paul. 2022. Who pays for sustainability? An analysis of sustainability-linked bonds. Swiss Finance Institute Research Paper, 23-07.
- Richardson, Josephine. 2022. Enel A case study in transition finance using SLBs. Anthropocene Fixed Income Institute, https://imgl.wsimg.com/blobby/go/946d6aac-e6cc-430a-8898-520cf90f5d3e/ AFII_ENEL_SLB_Jul22_fontsembedded.pdf.
- Ul Haq, Imtiaz, & Doumbia, Djeneba. 2022. Structural Loopholes in Sustainability-Linked Bonds. World Bank Policy Research Working Paper Series.

Theoretical results on SLB's yield

Yield y of the SLB:

$$\sum_{t\in\underline{\underline{T}}}e^{-rt}\mathbb{E}_{\mathbb{Q}}[C_t]=\sum_{t\in\underline{\underline{T}}}e^{-yt}\mathbb{E}_{\mathbb{P}}[C_t]$$

Proposition (Yield relative to risk-free rate)

The yield of the SLB can be greater than, equal to or less than the risk-free interest rate, depending on the market price of risk:

- If $\lambda > 0$, then y > r.
- If $\lambda = 0$, then y = r.
- If $\lambda < 0$, then y < r.

Theoretical results on SLB's yield

Yield y of the SLB:

$$\sum_{t\in\underline{\underline{T}}}e^{-rt}\mathbb{E}_{\mathbb{Q}}[C_t]=\sum_{t\in\underline{\underline{T}}}e^{-yt}\mathbb{E}_{\mathbb{P}}[C_t]$$

Proposition (Convergence of yield)

Let all parameters be fixed. If the SPT reduction rate g with initial SPT value $B_0 \neq 0$ or the KPI reduction rate α converges to $\pm \infty$, the yield y converges to the risk-free rate r.

Appendix

Theoretical results on SLB's yield

Yield *y* of the SLB:

$$\sum_{t\in\underline{\underline{T}}}e^{-rt}\mathbb{E}_{\mathbb{Q}}[C_t]=\sum_{t\in\underline{\underline{T}}}e^{-yt}\mathbb{E}_{\mathbb{P}}[C_t]$$

Proposition (Behavior of yield)

In the special case of one examination date, the yield y has a single peak (trough) with respect to the SPT level B or the KPI reduction rate α if the market price of risk λ is positive (negative) while keeping everything else fixed. Furthermore, for a given yield y, there exist at most two SPT levels or two KPI reduction rates if everything else is kept fixed.

Two examination dates

Parameter: $\tau_1=0.75$ with $\Delta c_1=0.5$ and $\tau_2=8.75$ with $\Delta c_2=0.75;~B_0=700$ and g=-4%

CCAPM Approach

Consider a representative agent with

- subjective discount factor β ,
- utility u given by a power utility function

$$u(x) := \frac{x^{1-\gamma}}{1-\gamma}$$

with risk aversion coefficient $\gamma \in \mathbb{R}_+ \backslash \{1\}$, and

• consumption level x_t at time t given by

$$\ln(x_t) = \ln(x_0) + \mu_x t + \sigma_x W_t^x$$

with initial consumption level x_0 , expected log consumption growth $\mu_x \in \mathbb{R}$, volatility of log consumption growth $\sigma_x > 0$ and risk driver W^x given by a Brownian motion under \mathbb{P} correlated with factor $\rho \in [-1, 1]$ to KPI's risk driver W.

Appendix

CCAPM Approach

► Price of SLB:

$$\begin{split} \mathcal{P}^{\mathsf{CCAPM}} &= \sum_{t \in \underline{\underline{T}}} \beta^{t} \mathbb{E}_{\mathbb{P}} \left[\frac{u'(x_{t})}{u'(x_{0})} C_{t} \right] \\ &= \mathcal{F} \tilde{\beta}^{T} + c_{0} \sum_{t \in \underline{\underline{T}}} \tilde{\beta}^{t} + \sum_{i=1}^{m-1} \Delta c_{i} \Phi(-\hat{d}(\tau_{i})) \sum_{\substack{t \in \underline{\underline{T}} \\ \tau_{i} \leq t < \tau_{i+1}}} \tilde{\beta}^{t} \\ &+ \Delta c_{m} \Phi(-\hat{d}(\tau_{m})) \sum_{\substack{t \in \underline{\underline{T}} \\ \tau_{m} \leq t}} \tilde{\beta}^{t}, \end{split}$$

with
$$ilde{eta}:=eta e^{-\gamma\mu_x+rac{1}{2}\gamma^2\sigma_x^2}$$
 and $\hat{d}(t):= ilde{d}(t)+\gamma\sigma_x
ho\sqrt{t}$

 $\rightarrow\,$ Similar structure as under the risk-neutral pricing approach

▶ Yield of SLB:
$$P^{\text{CCAPM}} = \sum_{t \in \underline{T}} e^{-yt} \mathbb{E}_{\mathbb{P}} [C_t]$$

Further parameter values for CCAPM

Parameter	Symbol	Values
Log consumption growth volatility	σ_{x}	4%
Expected log consumption growth	μ_{x}	1%
Subjective discount factor	β	0.99005
Risk aversion coefficient	γ	10
Correlation coefficient	ho	$\{-1,1\}$

Yield y w.r.t. SPT reduction rate g

Same behavior as under risk-neutral pricing approach

Yield y w.r.t. KPI reduction rate α

Same behavior as under risk-neutral pricing approach

Yield y w.r.t. penalty payment Δc

Same behavior as under risk-neutral pricing approach

Defaultable SLB

- \blacktriangleright Time at which the firm defaults δ (random variable)
 - Independent of the event that trigger SLB's penalty payments
 - Exponential distributed under risk-neutral default measure \mathbb{Q}^d and under real-world measure \mathbb{P}
 - Risk-neutral probability that firm has not defaulted by time t

$$q(t) := \mathbb{Q}^d(\delta > t) = e^{-\mu^{\mathbb{Q}^d}t}$$

where $\mu^{\mathbb{Q}^d}$ is constant (exogenous) intensity rate

► Real-world probability that firm has not defaulted by time t

$$p(t) := \mathbb{P}(\delta > t) = e^{-\mu^{\mathbb{P}}t}$$

where $\mu^{\mathbb{P}} < \mu^{\mathbb{Q}^d}$ is constant (exogenous) intensity rate

Recovery payment $R \geq 0$ at time δ

Defaultable SLB

Risk-neutral price of SLB

$$P^{d} = q(T) \sum_{t \in \underline{\underline{T}}} e^{-rt} \mathbb{E}_{\mathbb{Q}}[C_{t}] + \int_{0}^{T} \left(\sum_{t \in \underline{\underline{T}}, \ t \leq s} e^{-rt} \mathbb{E}_{\mathbb{Q}}[C_{t}] + Re^{-rs} \right) q(s) \mu^{\mathbb{Q}^{d}} ds$$

where $\ensuremath{\mathbb{Q}}$ is standard risk-neutral measure

Yield of SLB

$$P^{d} = p(T) \sum_{t \in \underline{T}} e^{-rt} \mathbb{E}_{\mathbb{P}}[C_{t}] + \int_{0}^{T} \left(\sum_{t \in \underline{T}, t \leq s} e^{-rt} \mathbb{E}_{\mathbb{P}}[C_{t}] + Re^{-rs} \right) p(s) \mu^{\mathbb{P}} ds$$

Further parameter values for defaultable SLB

- Base case values as for risk-neutral pricing approach without default
- Intensity rates increases if the discounted penalty payments increases:

$$\mu^{\mathbb{P}} = 0.01 + rac{\Delta}{F}$$
 and $\mu^{\mathbb{Q}^d} = 0.03 + rac{\Delta}{F}$

with $\Delta := \delta c \sum_{t \underline{T}, \ \tau \leq t} e^{-rt}$

Recovery payment 40% of face value, i.e., R = 40

Yield y w.r.t. SPT reduction rate g

Financing costs increase due to the firm's default risk

Same behavior as without default

Yield y w.r.t. KPI reduction rate α

► Financing costs increase due to the firm's default risk

Same behavior as without default

Yield y w.r.t. penalty payment Δc

- ► Assumption: Higher penalty payment ⇒ Higher default probability
- Influence of default risk can exceed risk of not achieving SPTs by KPI if Δc is large enough
- ightarrow Non-monotonic behavior w.r.t. Δc