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Why apply an algorithm?
Why apply an algorithm?

Prediction

We want to predict the response of new observations

Inference

We want to understand the data generating mechanism

See also Breiman ( ) and Efron ( ) for related discussions about the different culture in statistics and
machine learning.

2001 2020
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Interpretability
Interpretability of an algorithm is clearly important if inference is the goal.

But it may also be important in sole prediction tasks

decisions shall be explained to stakeholders

risk/robustness of prediction shall be assessed.
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Accuracy vs Interpretability?
Breiman ( ):2001

Occam’s Razor, long admired, is usually interpreted to mean that simpler is better. Unfortunately, in
prediction, accuracy and simplicity(interpretability) are in conflict.

[…] models that best emulate nature in terms of predictive accuracy are also the most complex and
inscrutable.

In the following I want to challenge this point of view.
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A functional decomposition
Assume a data set with  features . Also assume that we can describe the regression function  by a (q-th) order

 functional decomposition:
d m

(q << p)

m(x) = m0 +
d

∑
k=1

mk(xk) + ∑
k1<k2

mk1k2
(xk1

,xk2
) + ⋯ + ∑

k1<⋯<kq

mk1,…,kq(xk1
, … ,xkq).

Optimal rates of convergence under the assumption that  has two continuous partial derivatives:

Model general Comparable sample sizes for 

Full model  = 1 000 000

Interaction (q) 1 000 -- 1 000 000

Interaction (q=2) 4 000

Additive (q=1) 1 000

m

d = 6 d = 6

Op(n−2/(d+4)) Op(n−1/5)

Op(n−2/(q+4))

Op(n−1/3)

Op(n−2/5)
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Random Forest in additive models
Random Forests do not perform well in additive models.

with  uniform in  and

Need  splits/final leaves to approximate  well.

Have only  data points in each leave which may be very small for large dimension .

Example

Yi = m(Xi) + εi,

Xi [0, 1]d

m(x) =
d

∑
k=1

1{xk ≤ 0.5}.

O(2d) m

OP (n/2d) d
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Random Planted Forest: A Directly
Interpretable Tree Ensemble
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Random Planted Forest: A Directly Interpretable Tree Ensemble
This is joint work with

       

Heidelberg University       

      

Heidelberg University       

Paper is available on 

Joseph Meyer Enno Mammen

https://arxiv.org/abs/2208.06151
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Random Planted Forest: The algorithm
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Random Planted Forest The algorithm

Start with a fixed structure and become more complex in a data driven way along a pre-specified path

We aim to estimate the components  simultaneously

This is different to Lou et al. ( ) and related literature that first specify the components and then estimate
them iteratively.

m(x) = m0 +
d

∑
k=1

mk(xk) +∑
k<l

mkl(xk,xl) + ∑
j<k<l

mjkl(xj,xk,xl) + ⋯ .

mk,mkl, …

2013

How:

Replace tree in classical random forest by a family of trees that grow simultaneously.

Each tree corresponds to a component in the functional decomposition.

first order approximation  additive model.

second order approximation  fitting main term and pairwise interactions.

order of approximation = number of covariates  no restriction on functional form

→

→

⇒
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Random Planted Forest The algorithm

Setting: =3, =0.6, =5, =4  

3 possible combinations:

  2 viable combinations randomly

picked, say:

,

For each viable split option we consider 5 randomly

picked split points   split options.

Compare the 10 split options: 

 produces minimal least squares loss.

dim ttry splittry nsplits Split 1 Split 2 Split 3 Split 4

m0 → m1 : x1

m0 → m2 : x2

m0 → m3 : x3

ttry : 0.6 × 3 = 1.8 →

m0 → m1 : x1

m0 → m2 : x2

splittry :

→ 2 × 5 = 10

∑i(m̂(Xi) − Yi)
2

(m2tree → x2, c1)
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Random Planted Forest in additive models
Random Planted Forests does perform well in additive models.

with  uniform in  and

Need  instead of  splits/final leaves to approximate  well.

Have  data points in each leave which may be large compared to  for large dimension .

Example

Yi = m(Xi) + εi,

Xi [0, 1]d

m(x) =
d

∑
k=1

1{xk ≤ 0.5}.

O(d) O(2d) m

OP (n/d) OP (n/2d) d
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Random Planted Forest The algorithm (alternative representation)
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Random Planted Forest: Simulation results
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Random Planted Forest Accuracy: Simulation

We will evaluate how Random Planted forest deals
with combinations of interactions, variable
selection/sparsity, non-linearity/jumps.. Simulations
are run with optimal parameters

Comparison between

Random Planted Forest

XGboost – a gradient boosting variant

gam via mgcv package (= GLM with smoothing splines)

 

Additive, Sparse (2/30 features), Non-linear (sin-
curve)

True function: black solid line. Grey lines: 40 Monte Carlo

simulations

xgboost (additive=depth=1), planted forest (additive= max

interaction=1)

Regression setting (In all simulations):

Yi = m(xi) + εi, i = 1, … , 500,xi ∈ R
dim

dim = 30

Corr(Xj,Xk) ≈ 0.3,  j ≠ k

εi ∼ N(0, 1), iid

First setting Second setting Third setting:

m(x) = m1(x1) + m2(x2) + ⋯ + m30(x30)

m1(x1) = −2 sin(πx1),  m2(x2) = 2 sin(πx2)

m3(x3) = m4(x4) = ⋯ = m30(x30) = 0
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Random Planted Forest Simulation results

sparse+smooth+additive. Table shows Mean Squared Error (Standard deviation)

Method Assumption dim=4 dim=10 dim=30

xgboost additive 0.119 (0.021) 0.142 (0.021) 0.176 (0.027)

xgboost - 0.141 (0.024) 0.166 (0.028) 0.193 (0.033)

xgboost-CV - 0.139 (0.028) 0.152 (0.029) 0.194 (0.035)

rpf additive 0.087 (0.018) 0.086 (0.017) 0.097 (0.019)

rpf interaction(2) 0.107 (0.015) 0.121 (0.025) 0.142 (0.026)

rpf - 0.112 (0.017) 0.134 (0.026) 0.162 (0.028)

rpf-CV - 0.103 (0.02) 0.102 (0.035) 0.105 (0.022)

rf - 0.209 (0.021) 0.252 (0.027) 0.3 (0.029)

sbf additive+smooth 0.071 (0.026) 0.134 (0.013) 0.388 (0.073)

gam additive+smooth 0.033 (0.012) 0.035 (0.013) 0.058 (0.021)

BART - 0.085 (0.019) 0.076 (0.017) 0.091 (0.023)

BART-CV - 0.09 (0.019) 0.081 (0.014) 0.09 (0.02)

MARS smooth 0.054 (0.014) 0.061 (0.025) 0.076 (0.031)16 / 42



Random Planted Forest Simulation results

sparse+jump+additive. Table shows Mean Squared Error (Standard deviation)

Method Assumption dim=4 dim=10 dim=30

xgboost additive 0.19 (0.029) 0.282 (0.044) 0.401 (0.045)

xgboost - 0.198 (0.031) 0.265 (0.053) 0.286 (0.034)

xgboost-CV - 0.209 (0.028) 0.281 (0.052) 0.313 (0.058)

rpf additive 0.159 (0.033) 0.198 (0.075) 0.179 (0.041)

rpf interaction(2) 0.185 (0.028) 0.24 (0.066) 0.259 (0.043)

rpf - 0.192 (0.026) 0.251 (0.065) 0.282 (0.043)

rpf-CV - 0.169 (0.033) 0.207 (0.072) 0.183 (0.042)

rf - 0.274 (0.035) 0.322 (0.05) 0.375 (0.037)

sbf additive+smooth 0.342 (0.049) 0.603 (0.053) 1.112 (0.138)

gam additive+smooth 0.41 (0.047) 0.406 (0.027) 0.431 (0.06)

BART - 0.177 (0.047) 0.162 (0.038) 0.157 (0.034)

BART-CV - 0.179 (0.051) 0.163 (0.041) 0.159 (0.036)

MARS smooth 0.751 (0.136) 0.74 (0.104) 0.687 (0.123)17 / 42



Random Planted Forest Simulation results

sparse+smooth+hierarchical interaction. Table shows Mean Squared Error (Standard deviation)

Method Assumption dim=4 dim=10 dim=30

xgboost - 0.374 (0.035) 0.481 (0.064) 0.557 (0.089)

xgboost-CV - 0.393 (0.051) 0.499 (0.058) 0.563 (0.089)

rpf interaction(2) 0.248 (0.038) 0.327 (0.045) 0.408 (0.07)

rpf - 0.263 (0.034) 0.357 (0.044) 0.452 (0.076)

rpf-CV - 0.277 (0.039) 0.366 (0.051) 0.463 (0.083)

rf - 0.432 (0.039) 0.575 (0.061) 0.671 (0.08)

BART - 0.214 (0.03) 0.223 (0.04) 0.252 (0.037)

BART-CV - 0.242 (0.043) 0.276 (0.053) 0.315 (0.047)

MARS smooth 0.355 (0.089) 0.282 (0.038) 0.414 (0.126)

1-NN no noise 2.068 (0.156) 5.988 (0.624) 11.059 (0.676)

average no covariates 8.366 (0.43) 8.086 (0.246) 8.207 (0.496)
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Random Planted Forest Simulation results

sparse+smooth+pure interaction. Table shows Mean Squared Error (Standard deviation)

Method Assumption dim=4 dim=10 dim=30

xgboost - 0.417 (0.082) 0.797 (0.16) 1.381 (0.234)

xgboost-CV - 0.443 (0.078) 0.872 (0.136) 1.497 (0.326)

rpf interaction(2) 0.416 (0.082) 1.289 (0.224) 1.822 (0.208)

rpf - 0.219 (0.035) 0.556 (0.143) 1.186 (0.236)

rpf-CV - 0.233 (0.033) 0.603 (0.163) 1.313 (0.253)

rf - 0.304 (0.047) 0.744 (0.305) 1.295 (0.317)

BART - 0.168 (0.022) 0.172 (0.032) 0.202 (0.021)

BART-CV - 0.192 (0.03) 0.199 (0.039) 0.223 (0.025)

MARS smooth 0.245 (0.088) 0.831 (0.728) 0.429 (0.403)

1-NN no noise 1.323 (0.117) 2.642 (0.317) 4.173 (0.413)

average no covariates 2.187 (0.125) 2.226 (0.174) 2.177 (0.146)
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Random Planted Forest: Theoretical Results
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Random Planted Forest Theoretical Results

The components  are twice continuously differentiable functions.

Conditionally on  and the iterative construction of the leaves, the error variables  have mean zero, variance
bounded by a constant, and the products  are mean zero for . This excludes splitting choices based on
the CART criterion.

Conditionally on  the iterative construction of the leaves in the different trees are i.i.d.

For simplicity we also assume that the planted trees are based on the original data and not on bootstrap
samples.

Assumptions (for stylized Random Planted Forest)

m1, … , mk1,...,kq

Xi εi

εiεj i ≠ j

Xi
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Random Planted Forest Theoretical Results

In Random Forest

the tree estimator only depends on the leaves but not on other structural elements of the tree, and in particular
not on the way how the tree has grown.

tree estimates are given by leaf averages

In our setting both facts do not hold. This creates the main difficulty in our theory.

Challenges in analyzing Random Planted Forest (compared to Random Forest)
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Random Planted Forest Theoretical Results

Up to logarithmic factors, the forest estimator achieves optimal rates for , i.e. same rates as for estimating
a nonparametric regression function with one- or two-dimensional argument, if the number  of splits
is chosen optimally .

The forest estimator achieves faster rates than the tree family estimator.

Main Results

q ≤ 2
nsplits

(O(nq/5))
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Random Planted Forest Idea of proof for : tree family

A�er  splits we have

A�er the last iterations  one gets that

for . Subtracting

gives an integral equation for 

q = 1

s

m̂
(s),l
ks

(xks) = ^̄m
(s),l
ks

(xks) − ∑
k′≠ks

∫
p̂

(s),l
ks,k′(xks ,xk′)

p̂
(s),l
ks

(xks)
m̂

(s−1),l
k′ (xk′)dxk′

s = S

m̂l
k(xk) ≈ ^̄m

(S),l
k (xk) −∑

k′≠k

∫
pk,k′(xk,xk′)

pk(xk)
m̂l

k′(xk′)dxk′

1 ≤ k ≤ d

mk(xk) = m̄k(xk) −∑
k′≠k

∫
pk,k′(xk,xk′)

pk(xk)
mk′(xk′)dxk′ .

(m̂l
k − mk)dk=1
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Random Planted Forest Idea of proof for : tree family

Under assumptions on the kernel  it holds:

The solution  is of the same order as the intercept ,

which as a piecewise constant estimator has optimal rate  if  is chosen of order .

q = 1

m̂l
k(xk) − mk(xk) ≈ ^̄m

(S),l
k (xk) − m̄k(xk) − ∑

k′≠k

∫
pk,k′(xk,xk′)

pk(xk)
(m̂l

k′(xk′) − mk′(xk′))dxk′ .

pk,k′(xk,xk′)

pk(xk)

(m̂l
k(xk) − mk(xk))

k=1,...,d
( ^̄m

(S),l
k (xk) − m̄k(xk))

k=1,...,d

n−1/3 nsplits n1/3
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Random Planted Forest Idea of proof for : from tree family to forest

Smoothing kernel methods put the same weight le�
and right to every point

 Bias = 

Histograms do not put the same weight le� and right
to every point

 Bias= 

q = 1

Op(b2) Op(b)

Random Planted Forest do via the  parameter

Random Planted Forest
Bias= ,

.

splittry

Op(b2)

b = L−1 ∑L
l=1(bl)

 For Random Planted Forest to achieve optimal convergence rate it is essential that the split points are picked
from a random selection

The intercept  has a faster rate of convergence than :  (if  is
chosen of order ).

This rates carries over to the solution  of the integral equation.

→

( ^̄m
(S)
k − m̄k)dk=1 ( ^̄m

(S),b
k − m̄k)dk=1 n−2/5 nsplits

n1/5

(m̂k − mk)dk=1
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Random Planted Forest Idea of proof for 

A central argument in the proof is the convergence of  to 

For  this convergence is not fast enough to carry over the above arguments of . In particular, one
cannot achieve rates of convergence that are the same as for the estimation of -dimensional functions. For

 one would not even get consistency of .

q = 1

Comment on limitation of theory

p̂
(s),b
k,k′ (xk, xk′) pk,k′(xk, xk′)

q ≥ 3 q = 1
q

q ≥ 4 p̂
(s),b
k,k′ (xk, xk′)
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Random Planted Forest: Identifying the components
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Random Planted Forest Identifying the components

Consider a regression function  with functional decomposition

If for every ,

we say that the functional decomposition satifies the marginal identification.

Definition [Marginal identification]

m : Rd → R

m(x) = ∑
S⊆{1,…,d}

mS

S ⊆ {1, … , d}

∑
T :T∩S≠∅

∫ mT (xT )pS(xS)dxS = 0,
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Random Planted Forest Identifying the components

If  satisfies the marginal identification, then

Interventional SHAP values are weighted averages of the components

interaction component is equally split between involved features:

If  satisfies the marginal identification, then the partial dependence plot of feature  is

Under certain causal assumptions, the component  can be interpreted as average natural direct effect of
feature  on the output .

Theorem [Marginal identification  Interventional SHAP ]↔

m̂n = ∑S⊆{1,…,d} m̂S

ϕk(x) = m̂k(xk) +
1

2
∑
j

m̂kj(xkj) + ⋯ +
1

d
m̂1,…,d(x1,…,d).

Corollary [Marginal identification  PDP ]↔

m̂n = ∑S m̂S k

ξk(xk) = ∫ m̂n(x)pX−k
(x−k)dx−k = m̂0 + m̂k(xk).

m̂k

k m̂n(x)
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Random Planted Forest: An ongoing project
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Random Planted Forest An ongoing project

       

Heidelberg University       

      

Heidelberg University       

      

University of Copenhagen       

The Leibniz Institute for Prevention
Research and Epidemiology - BIP

  

The Leibniz Institute for Prevention
Research and Epidemiology - BIP       

Joseph Meyer Enno Mammen Jinyang Liu

Lukas Burk Marvin Wright
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Random Planted Forest An ongoing project
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randomPlantedForest
randomPlantedForest implements “Random Planted Forest”, a directly interpretable tree ensemble (arxiv).

Installation

You can install the development version of randomPlantedForest from GitHub with

# install.packages("remotes")
remotes::install_github("PlantedML/randomPlantedForest")

or from r-universe with

install.packages("randomPlantedForest", repos = "https://plantedml.r-universe.dev")
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Random Planted Forest for insurance claim prediction
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Random Planted Forest for insurance claim prediction

library(CASdatasets)1
data(freMPL1) 2
data(freMPL2) 3
data(freMPL3) 4
data(freMPL4)5

6
freMPL3 <- subset( freMPL3 , select = -DeducType )  7
freMPL4 <- subset( freMPL4 , select = -DeducType )  8
freMPL <- rbind(freMPL1,freMPL2,freMPL3,freMPL4)9
mydata <- freMPL[,-c(3,4,19)]10

11
head(mydata)12

  Exposure LicAge VehAge Gender MariStat SocioCateg               VehUsage
1    0.583    366      2 Female    Other       CSP1           Professional
2    0.200    187      0   Male    Alone      CSP55 Private+trip to office
3    0.083    169      1 Female    Other       CSP1           Professional
4    0.375    170      1 Female    Other       CSP1           Professional
5    0.500    224      3   Male    Other      CSP47           Professional
6    0.499    230      3   Male    Other      CSP47           Professional
  DrivAge HasKmLimit BonusMalus        VehBody VehPrice
1      55          0         72          sedan        D
2      34          0         80       microvan        K
3      33          0         63 other microvan        L
4      34          0         63 other microvan        L
5      53          0         72            van        L
6      53          0         68            van        L
                     VehEngine VehEnergy  VehMaxSpeed VehClass RiskVar
1                    injection   regular 160-170 km/h        B      15
2 direct injection overpowered    diesel 170-180 km/h       M1      20
3 direct injection overpowered    diesel 170-180 km/h       M1      17
4 direct injection overpowered    diesel 170-180 km/h       M1      17
5 direct injection overpowered    diesel 140-150 km/h        0      19
6 direct injection overpowered    diesel 140-150 km/h        0      19
          Garage ClaimInd
1           None        0
2           None        0
3 None 035 / 42



Random Planted Forest for insurance claim prediction

library(randomPlantedForest)1
2

rpf_fit   = rpf(ClaimInd~., 3
              data=train,4
              ntrees = 50,5
                      max_interaction=2,6
                      splits =300,7
                      split_try = 2,8
                      t_try=0.1,9
                      nthreads=10,10
                      epsilon=0.001,11
                      delta=0.001,12
                      loss="exponential",13
                      predict_type = "prob")14

15
glex_rpf <- glex(rpf_fit, test)16
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Random Planted Forest for insurance claim prediction

vi_rpf <- glex_vi(glex_rpf)1
2

p_vi <- autoplot(vi_rpf, threshold = .03) + 3
  labs(title = NULL, tag = "RPF")4

5
p_vi + plot_annotation(title = "Variable importance scores by term") & 6
  theme(plot.tag.position = "top")7
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Random Planted Forest for insurance claim prediction

p1 <- autoplot(glex_rpf, "Exposure") + labs(subtitle = "RPF")1
p2 <- autoplot(glex_rpf, "DrivAge") + labs(subtitle = "RPF")2
p3 <- autoplot(glex_rpf, "BonusMalus") + labs(subtitle = "RPF")3
p4 <- autoplot(glex_rpf, "LicAge") + labs(subtitle = "RPF")4
p5 <- autoplot(glex_rpf, "VehMaxSpeed", las = 2) + labs(subtitle = "RPF")5

6
p11 + p2 + p3 / p4 + p5 + theme(axis.text.x = element_text(angle = 45)) +  plot_layout(heights = c(.5, .5))7
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Random Planted Forest for insurance claim prediction

Two-way interaction: DrivAge, VehUsage

autoplot(glex_rpf, c("DrivAge","VehUsage")) + labs(subtitle = "RPF") +  1
  theme(plot.tag.position = "top")2

39 / 42



Random Planted Forest for insurance claim prediction

Two-way interaction: Exposure, Bonus Malus

autoplot(glex_rpf, c("DrivAge","VehUsage")) + labs(subtitle = "RPF") +  1
  theme(plot.tag.position = "top")2
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Thank You!
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