

The Survivor Dividend as a Tool to Improve Pension Adequacy in Nonfinancial Defined Contribution Pension Schemes

Séverine Arnold, HEC Lausanne

5th European Congress of Actuaries www.eca2024.org

The Survivor Dividend as a Tool to Improve Pension Adequacy in Nonfinancial Defined Contribution Pension Schemes

Séverine Arnold¹, María del Carmen Boado-Penas², Zuochen Song²

¹Faculty of Business and Economics (HEC Lausanne), University of Lausanne, Switzerland ²Institute for Financial and Actuarial Mathematics (IFAM), Department of Mathematical Sciences, University of Liverpool, UK

> ECA 2024 June 6, 2024

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

Introduction NDCs

Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

 Pay-as-you-go (PAYG): Pensions for retirees are paid by the current active population.

- Pay-as-you-go (PAYG): Pensions for retirees are paid by the current active population.
 - \rightarrow Unfunded schemes

- Pay-as-you-go (PAYG): Pensions for retirees are paid by the current active population.
 - \rightarrow Unfunded schemes
- ► Funding: Active people finance their own pension.

- Pay-as-you-go (PAYG): Pensions for retirees are paid by the current active population.
 - \rightarrow Unfunded schemes
- ► Funding: Active people finance their own pension.
 - \rightarrow Funded schemes

Two basic techniques in order to determine the pension amount:

Two basic techniques in order to determine the pension amount:

Defined Benefit (DB): Pension is calculated according to a pre-defined formula which usually depends on the member's salary and the number of contributed years.

Two basic techniques in order to determine the pension amount:

- Defined Benefit (DB): Pension is calculated according to a pre-defined formula which usually depends on the member's salary and the number of contributed years.
- ▶ Defined Contribution (DC): Pension depends on the accumulated capital.

	PAYG	Funding
DB	Classical social security	Classical employee benefit DB plan
DC	NDCs	Pension saving accounts

	PAYG	Funding
DB	Classical social security	Classical employee benefit DB plan
DC	NDCs	Pension saving accounts

 \rightarrow NDCs attempt to reproduce the logic of a financial defined contribution pension plan within a pay-as-you-go framework.

Introduction

NDCs Survivor Dividend

Aims

Aim 1

Results Conclusion

Aim 2

In most NDC countries, when a death occurs prior to the retirement age, the accumulated capital of the deceased person is kept by the scheme.

- In most NDC countries, when a death occurs prior to the retirement age, the accumulated capital of the deceased person is kept by the scheme.
- Sweden is the only country that distributes the accumulated capital of the deceased person among the survivors of the same birth cohort.

- In most NDC countries, when a death occurs prior to the retirement age, the accumulated capital of the deceased person is kept by the scheme.
- Sweden is the only country that distributes the accumulated capital of the deceased person among the survivors of the same birth cohort.
 → Survivor Dividend (or inheritance gains, Boado-Penas and Vidal-Meliá [2014]).

- In most NDC countries, when a death occurs prior to the retirement age, the accumulated capital of the deceased person is kept by the scheme.
- Sweden is the only country that distributes the accumulated capital of the deceased person among the survivors of the same birth cohort.
 - \rightarrow Survivor Dividend (or inheritance gains, Boado-Penas and Vidal-Meliá [2014]).
 - \rightarrow Does not take into account social justice or pension adequacy.

• Distribute it to the survivors, as in Sweden.

Distribute it to the survivors, as in Sweden.

 \rightarrow But how should we proceed for the system to be at equilibrium?

- Distribute it to the survivors, as in Sweden.
 - \rightarrow But how should we proceed for the system to be at equilibrium?

Accumulate some financial reserves for other purposes.

- Distribute it to the survivors, as in Sweden.
 - \rightarrow But how should we proceed for the system to be at equilibrium?

► Accumulate some financial reserves for other purposes. → Can we use it to finance a minimum pension?

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

1. To determine how the survivor dividend should be distributed among the survivors for the system to be at equilibrium.

- 1. To determine how the survivor dividend should be distributed among the survivors for the system to be at equilibrium.
- 2. To determine if the amount of the survivor dividend is sufficiently large to guarantee a minimum pension to the lowest socio-economic classes \rightarrow minimum standard of living for the pensioners.

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results

Conclusion

Aim 2

▶ When considering mortality per socio-economic group

When considering mortality per socio-economic group

 \rightarrow Distribute the SD equally to pensioners of the same birth cohort.

- When considering mortality per socio-economic group
 - \rightarrow Distribute the SD equally to pensioners of the same birth cohort.
 - \rightarrow Compute a SD per socio-economic class: we redistribute the account balance of those in socio-economic group *i* who do not survive until the retirement age, to the contributors in group *i* who survive until the retirement age.

- When considering mortality per socio-economic group
 - \rightarrow Distribute the SD equally to pensioners of the same birth cohort.
 - \rightarrow Compute a SD per socio-economic class: we redistribute the account balance of those in socio-economic group *i* who do not survive until the retirement age, to the contributors in group *i* who survive until the retirement age.
- When considering unisex mortality

- When considering mortality per socio-economic group
 - \rightarrow Distribute the SD equally to pensioners of the same birth cohort.
 - \rightarrow Compute a SD per socio-economic class: we redistribute the account balance of those in socio-economic group i who do not survive until the retirement age, to the contributors in group *i* who survive until the retirement age.
- When considering unisex mortality

 \rightarrow The system cannot be at equilibrium if we keep a contribution rate constant across socio-economic groups.

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

For the system to be at equilibrium with an equal contribution rate across socio-economic groups, we need to compute pensions using socio-economic mortality rates and distribute the SD.

For the system to be at equilibrium with an equal contribution rate across socio-economic groups, we need to compute pensions using socio-economic mortality rates and distribute the SD.

However, in practice, unisex mortality tables are used to determine the amount of the pension.

For the system to be at equilibrium with an equal contribution rate across socio-economic groups, we need to compute pensions using socio-economic mortality rates and distribute the SD.

However, in practice, unisex mortality tables are used to determine the amount of the pension.

 \rightarrow The system will never be at equilibrium!

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusion

Aim 2 Without the Survivor Dividend

With the Survivor Dividend Numerical Illustration Conclusion

$$E_t^{nd} = \sum_i \left[P_{(x_e+A,t)}^{i,nd} \cdot I_{x_e+A}^i \cdot \ddot{a}_{x_e+A}^{\lambda,i} \right]$$

where

- x_e is the entry age in the system;
- ► A is the number of years during which contributions are paid and thus x_e + A represents the retirement age;
- P^{i,nd}_(xe+A,t) is the initial pension at time t for an individual age xe + A, belonging to the socio-economic category (SEC) i, when the survivor dividend and SEC mortality are not taken into account;
- ▶ I_x^i is the number of individuals alive at age x, belonging to SEC *i*;
- $\ddot{a}_x^{\lambda,i} = \sum_{k=0}^{\infty} \left\{ (1+\lambda)/(1+g) \right\}^k \cdot {}_k p_x^i$ is a whole life annuity-due indexed at rate λ , with an interest rate g, for an individual age x and belonging to SEC i.

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusior

$$E_t = \sum_i \left[P^{ii}_{(x_e+A,t)} \cdot I^i_{x_e+A} \cdot \ddot{a}^{\lambda,i}_{x_e+A}
ight]$$

where

 Pⁱⁱ_(xe+A,t) is the initial pension at time t for an individual age x_e + A, belonging to the socio-economic category (SEC) i, when the survivor dividend and SEC mortality are taken into account.

$$E_t = \sum_i \left[P^{ii}_{(x_e+A,t)} \cdot I^i_{x_e+A} \cdot \ddot{a}^{\lambda,i}_{x_e+A}
ight]$$

where

Pⁱⁱ_(xe+A,t) is the initial pension at time t for an individual age x_e + A, belonging to the socio-economic category (SEC) i, when the survivor dividend and SEC mortality are taken into account.

$$ightarrow P^{ii}_{(x_e+A,t)} > P^{i,nd}_{(x_e+A,t)}
ightarrow E_t > E_t^{nd}$$

$$E_t = \sum_i \left[P^{ii}_{(x_e+A,t)} \cdot I^i_{x_e+A} \cdot \ddot{a}^{\lambda,i}_{x_e+A}
ight]$$

where

 Pⁱⁱ_(xe+A,t) is the initial pension at time t for an individual age x_e + A, belonging to the socio-economic category (SEC) i, when the survivor dividend and SEC mortality are taken into account.

$$ightarrow P^{ii}_{(x_e+A,t)} > P^{i,nd}_{(x_e+A,t)}
ightarrow E_t > E^{nd}_t$$

 \rightarrow The difference between E_t and E_t^{nd} represents the amount saved by the scheme.

$$E_t = \sum_i \left[P^{ii}_{(x_e+A,t)} \cdot I^i_{x_e+A} \cdot \ddot{a}^{\lambda,i}_{x_e+A}
ight]$$

where

 Pⁱⁱ_(xe+A,t) is the initial pension at time t for an individual age x_e + A, belonging to the socio-economic category (SEC) i, when the survivor dividend and SEC mortality are taken into account.

$$ightarrow P^{ii}_{(x_e+A,t)} > P^{i,nd}_{(x_e+A,t)}
ightarrow E_t > E^{nd}_t$$

- \rightarrow The difference between E_t and E_t^{nd} represents the amount saved by the scheme.
- \rightarrow Which minimum pension can it finance?

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusior

Aim 2 Without the Survivor Dividend With the Survivor Dividend Numerical Illustration

Conclusion

Assumptions

- ► Entry age = 25;
- Retirement age = 65;
- Contribution rate = 16%;
- Baseline case:

growth rate of salaries = pension indexation = 0;

 French data for annual salaries and mortality rates per different level of educational attainment.

Group	Annual salary	% female population	% male population
Higher diploma	€26,328	9.77	9.01
Bachelor+	€21,600	8.33	6.35
CAP/BEP	€17,850	20.76	23.35
College certificate	€16,896	3.73	3.48
No diploma	€15,600	8.25	6.97

Table: French annual salary by level of educational attainment

Results

Figure: Annual pension for females considering female mortality per level of educational attainment

www.eca2024.org

Results

Figure: Annual pension for males considering male mortality per level of educational attainment

Minimum pension the system can grant to the lowest socio-economic categories:

 \rightarrow Amount of the annual minimum pension = 5'670.84 euro.

- \rightarrow Amount of the annual minimum pension = 5'670.84 euro.
- \rightarrow Benefit up to **66%** of the pensioners.

- \rightarrow Amount of the annual minimum pension = 5'670.84 euro.
- \rightarrow Benefit up to **66%** of the pensioners.
- \rightarrow Increase average pension by **487.35 euro (8.68%)**.

- \rightarrow Amount of the annual minimum pension = 5'670.84 euro.
- \rightarrow Benefit up to **66%** of the pensioners.
- \rightarrow Increase average pension by **487.35 euro (8.68%)**.
- \rightarrow Women in the lowest socio-economic group would receive an increase of 27%.

Introduction

NDCs Survivor Dividend Aims

Aim 1

Results Conclusior

Aim 2

Without the Survivor Dividend With the Survivor Dividend Numerical Illustration

Conclusion

 \rightarrow That proportion remained nearly unchanged from 2013 and 2018.

- \rightarrow That proportion remained nearly unchanged from 2013 and 2018.
- \rightarrow More actions and measures are needed in the future.

- \rightarrow That proportion remained nearly unchanged from 2013 and 2018.
- \rightarrow More actions and measures are needed in the future.

We proposed a potential solution for NDC schemes.

- \rightarrow That proportion remained nearly unchanged from 2013 and 2018.
- \rightarrow More actions and measures are needed in the future.

We proposed a potential solution for NDC schemes.

ightarrow If the survivor dividend is kept by the system, some reserves are accumulated.

- \rightarrow That proportion remained nearly unchanged from 2013 and 2018.
- \rightarrow More actions and measures are needed in the future.

We proposed a potential solution for NDC schemes.

 \rightarrow If the survivor dividend is kept by the system, some reserves are accumulated. \rightarrow These reserves can be used to finance a minimum pension that can benefit a significant proportion of the population!

- S. Arnold, M.C. Boado-Penas, and H. Godinez-Olivares. Longevity Risk in Notional Defined Contribution Pension Schemes: a Solution. *The Geneva Papers on Risk and Insurance Issues and Practice*, 41(1):24–52, 2016.
- M.C. Boado-Penas and C. Vidal-Meliá. Nonfinancial defined contribution pension schemes: is a survivor dividend necessary to make the system balanced? *Applied Economics Letters*, 21(4):242–247, 2014.

Thank you

Séverine Arnold

Director of the Master in Actuarial Science Professor in the Department of Actuarial Science

HEC Lausanne Université de Lausanne Switzerland Severine.Arnold@unil.ch