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INTRODUCTION

• Yield curves are used in actuarial science and finance for
deriving the present value of future cashflows;

• Several approaches have been proposed to model the uncertain
future evolution of the yield curves;

• Globalisation has intensified the financial markets’ connection,
inducing a complex dependence structure among different yield
curves;

• Deep learning has been successfully applied to several tasks in
the actuarial domain.

AIM: To develop deep learning models for accurate modelling and
forecasting multiple yield curves.



YIELD CURVES MOD-
ELLING: A STATIC APPROACH

Let y(τ) be the continuously-compounded zero-coupon nominal yield of a
τ -month bond,Nelson and Siegel (1987) assume that:

y(τ) = β0 + β1
(1− e−λτ

λτ

)
+ β2

(1− e−λτ

λτ
− e−λτ

)
+ ϵτ

where β0, β1, β2, λ ∈ R are model parameters.
Given a market data sample

(
ẏ(τ)

)
τ∈M, the parameters are estimated by

fixing the decay factor τ , and by solving:
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YIELD CURVES MODELLING:
A DYNAMIC APROACH

Let T = {t1, t2, . . . , tn} be a set of dates. Diebold and Li (2006) intro-
duces the dynamic version of the NS model:

yt(τ) = β0,t + β1,t
(1− e−λτ

λτ

)
+ β2,t

(1− e−λτ

λτ
− e−λτ

)
+ ϵτ,t,

where the parameters β0,t, β1,t, β2,t change over time.

They are estimated at each date t, by solving the sequence of optimisa-
tion problems:

argmin
β0,t,β1,t,β2,t

∑
τ∈M
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∀t ∈ T .



YIELD CURVES MODELLING: A DY-
NAMIC MULTI-CURVE APROACH

Let I = {curve1, curve2, . . . , curveI} be a set of different yield curves.
The Diebold and Li model in the multi-curve case reads:

y(i)
t (τ) = β

(i)
0,t + β

(i)
1,t
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(i)
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+ ϵ
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where β(i)
0,t, β

(i)
1,t, β

(i)
2,t are curve-specific parameters.

They are estimated by optimising:

argmin
β
(i)
0,t,β

(i)
1,t,β
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τ∈M
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λτ
−e−λτ

))2

,

that have to be solved for each t ∈ T , i ∈ I.



YIELD CURVES FORECASTING

Forecasts are obtained by specifying a dynamic model for the time-series(
β̂
(i)
j,t
)

t∈T , j = 0, 1, 2, i ∈ I. The two most popular choices are:
• Independent AR(1) models:

β
(i)
j,t = ψ0,j + ψ

(i)
1,jβ

(i)
j,t−1 + ϵ

(i)
j,t ,

where ψ(i)
0,j, ψ

(i)
1,j ∈ R, i ∈ I, j = 0, 1, 2 and ϵ(i)

j,t ∼ N(0, (σ
(i)
j )2).

• A Multivariate VAR(1) models for β(i)
t = (β

(i)
0,t, β

(i)
1,t, β

(i)
2,t) ∈ R3:

β(i)
t = a(i)

0 + A(i)β
(i)
t−1 + η(i)

t ,

with a(i)
0 ∈ R3,A(i) ∈ R3×3, and η

(i)
t ∼ N(0,E(i)) is the normal

distributed error term with covariance matrix E(i) ∈ R3×3.



YIELD CURVES MODELLING: THE
NELSON-SIEGEL-SVENSSON MODEL

Svensoon (1994) also introduced a four-factor extension of the NS model
that, in a dynamic framework, can be formalised as:

y(i)
t (τ) = β

(i)
0,t + β

(i)
1,t

(1− e−λ1τ

λ1τ

)
+ β

(i)
2,t

(1− e−λ1τ
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− e−λ1τ

)
+β

(i)
3,t
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λ2τ
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)
+ ϵ

(i)
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where β(i)
3,t, λ1, λ2 ∈ R.

the parameters β(i)
0,t, β

(i)
1,t, β

(i)
2,t, β

(i)
3,t are estimated via OLS estimator for

fixed values for λ1, λ2.



NEURAL NETWORKS

Let x ∈ Rq0 be the vector of features, a fully connected (FC) layer of size
q1 ∈ N is a function

z : Rq0 → Rq1 , x 7→ z(x) = (z1(x), z2(x), . . . , zq1(x))
⊤ .

Each component zj(x) is a non-linear function of x

x 7→ zj(x) = ϕ

(
wj,0 +

q0∑
l=1

wj,lxl

)
= ϕ (wj,0 + 〈wj, x〉) , j = 1, . . . , q1,

where ϕ : R → R is the activation function, wj,l ∈ R represent the
network parameters and 〈·, ·〉 denotes the scalar product in Rq0 .



DEEP NEURAL NETWORKS

In the case of d layers of size q = {qk}1≤k≤d ∈ Nd, the mapping reads:

x 7→ z(d:1)(x) def
=
(

z(d) ◦ · · · ◦ z(1)
)
(x) ∈ Rqd ,

where z(k) : Rqk−1 → Rqk . In the case of univariate response, the output
of the network is:

x 7→ µW(x) def
= ΨFFN

W (x) def
= g−1

(
w(d+1)

0 +

qd∑
l=1

w(d+1)
l z(d:1)

l (x)
)
,

g−1(·) is an inverse link function.



A MULTI-OUTPUT
NEURAL NETWORK MODEL

Let M = {τ1, τ2, . . . , τM} be the set of maturities considered with
|M| = M. We denote as:
• y(i)

t+1 ∈ RM the vector of the unknown yields related to the curve i at
time t + 1;

• Y(i)
t−L,t =

(
y(i)

t−l(τ)
)
0≤l≤L,τ∈M ∈ R(L+1)×M the matrix of the yield

rates for all maturities on the L + 1 past dates.
We desire to learn the mapping

f : R(L+1)×M × I → RM × RM × RM(
Y(i)

t−τ,t, i
)
7→
(
ŷ(i)

lb,t+1, ŷ
(i)
t+1, ŷ

(i)
ub,t+1

)
= f
(

Y(i)
t−L,t, i

)
.

where, choosen a confidence level α ∈ [0, 1], we denote as
• ŷ(i)

lb,t+1 the estimate of the lower quantile at level α/2;
• ŷ(i)

t+1 the estimate expected value or the median;
• ŷ(i)

ub,t+1 the estimate of the upper quantile at level 1− α/2.



NEURAL NETWORK
MODEL ARCHITECTURE

We use a NN architecture that combines Embedding layers and
some NN layers specifically designed for processing sequential data

Figure: Graphical representation of the neural network architecture.



PREDICTIONS

The predictions are derived as:

y(i)
t+1 = ϕ

(
bc + Uce(i) + Wcz(i)

t

)
y(i)

lb,t+1 = y(i)
t+1 − ϕ+

(
blb + Ulbe(i) + Wlbz(i)

t

)
y(i)

ub,t+1 = y(i)
t+1 + ϕ+

(
bub + Uube(i) + Wubz(i)

t

)

where ϕ+ : R → (0,+∞), and bj,Uj,Wj, j ∈ {c, lb, ub} are network
parameters.
This formulation ensures no-quantile crossing:

y(i)
lb,t+1 < y(i)

t+1 < y(i)
ub,t+1.



SOME REMARKS

(1) The model presents some connections with the affine models:

ϕ−1(ŷ(i)
t+1(τ)

)
= bc,τ +

〈
uc,τ , e(i)

〉
+
〈

wc,τ , z(i)
t

〉
.

Indeed, it has the constant-plus-linear structure and depends on the
vector of variables z(i)

t derived by the past observed data.
(2) We can also reformulate the equations of the quantile predictions:

ϕ−1
+

(
ŷ(i)

t+1(τ)− ŷ(i)
lb,t+1(τ)

)
= blb,τ +

〈
ulb,τ , e(i)

〉
+
〈

wlb,τ , z(i)
t

〉
emphasizing that we model, on the ϕ(−1) scale, the difference
between the central measure and lower quantile at a given maturity
τ is an affine model.



MODEL CALIBRATION

The network training requires to minimize the loss:

Lα,γ(W) = L(1)
α,γ(W) + L(2)

α,γ(W) + L(3)
α,γ(W)

=
∑
i,t,τ

ℓα/2(ẏ(i)
t (τ)− ŷ(i)

lb,t(τ)) +
∑
i,t,τ

hγ(ẏ(i)
t (τ)− ŷ(i)

t (τ)) +

∑
i,t,τ

ℓ1−α/2(ẏ(i)
t (τ)− ŷ(i)

ub,t(τ))

where ℓα(u), α ∈ (0, 1) is the pinball function:

ℓα(u) =
{
(1− α)|u| u ≤ 0

α|u| u > 0,

and hγ(u), γ ∈ {1, 2} is:

hγ(u) =
{
|u| γ = 1

u2 γ = 2,



NUMERICAL EXPERIMENTS:
EIOPA DATA

• European Insurance and Occupational Pensions Authority Data
Maturities: M = {τ ∈ N : 1 ≤ τ ≤ 150}
Period: Dec 2015 - Dec 2021.
34 curves related to the government bonds.

• Data Partitioning
Learning sample: Dec 2015 - Dec 2020;
Test sample: Jan 2021 - Dec 2021.

• NN architectures based on:
Long Short-Term Memory (LSTM) networks (YC_LSTM);
1D Convolutional Neural networks (YC_CONV);
Self-Attention based networks (YC_ATT);
Transformers models (YC_TRAS).

• Benchmark models:
Dynamic Nelson-Siegel (NS);
Dynamic Nelson-Siegel-Svensson (NSS).

• Interval predictions at confidence level α = 0.95.



PERFORMANCE MEASURES

We compare the models in terms of:

MSE =
1

n
∑
i∈I

∑
t∈T

∑
τ∈M

(y(i)
t (τ)− ŷ(i)

t (τ))2,

MAE =
1

n
∑
i∈I

∑
t∈T

∑
τ∈M

|y(i)
t (τ)− ŷ(i)

t (τ)|,

PICP =
1

n
∑
i∈I

∑
t∈T

∑
τ∈M

1{y(i)
t (τ) ∈ [̂y(i)

t,lb(τ), ŷ(i)
t,ub(τ)]}

MPIW =
1

n
∑
i∈I

∑
t∈T

∑
τ∈M

(
ŷ(i)

t,ub(τ)− ŷ(i)
t,lb(τ)

)
.



EIOPA DATA

Figure: Yield Curve data provided by EIOPA.



DYNAMIC NELSON-SIEGEL MODEL

Figure: Dynamic Nelson-Siegel Model.



FORECASTING RESULTS

Figure: Out-of-sample performance of the different deep learning models in terms of
MSE, MAE, PICP and MPIW; the MSE values are scaled by a factor of 105, while the
MAE values are scaled by a factor of 102. Bold indicates the smallest value, or, for the
PICP, the value closest to α = 0.95.



FORECASTING RESULTS:
UNCERTAINTY

Figure: Interval predictions for α = 0.95 related to the different yield curves.



FORECASTING RESULTS

Figure: MSE, MAE, and PICP obtained by the YC_ATT and NSS_VAR models in the
different countries.



CORRELATION BETWEEN THE NSS
FACTORS AND THE 4 PCS EXTRACTED
FROM (e(i), z(i)t )

Figure: Linear correlation coefficients (in absolute value) of the four PCs derived from
the learned features, represented as (e(i), z(i)

t ), with respect to the β
(i)
t factors of the

NSS model for the different yield curve families.
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