

Asian Actuarial Conference 2025 Bangkok

The Rise of Freelance Actuarial Ecosystems: A Scalable Model for Emerging Markets

14 Nov | 09:00 – 09:40

Harsh Vikram Arora

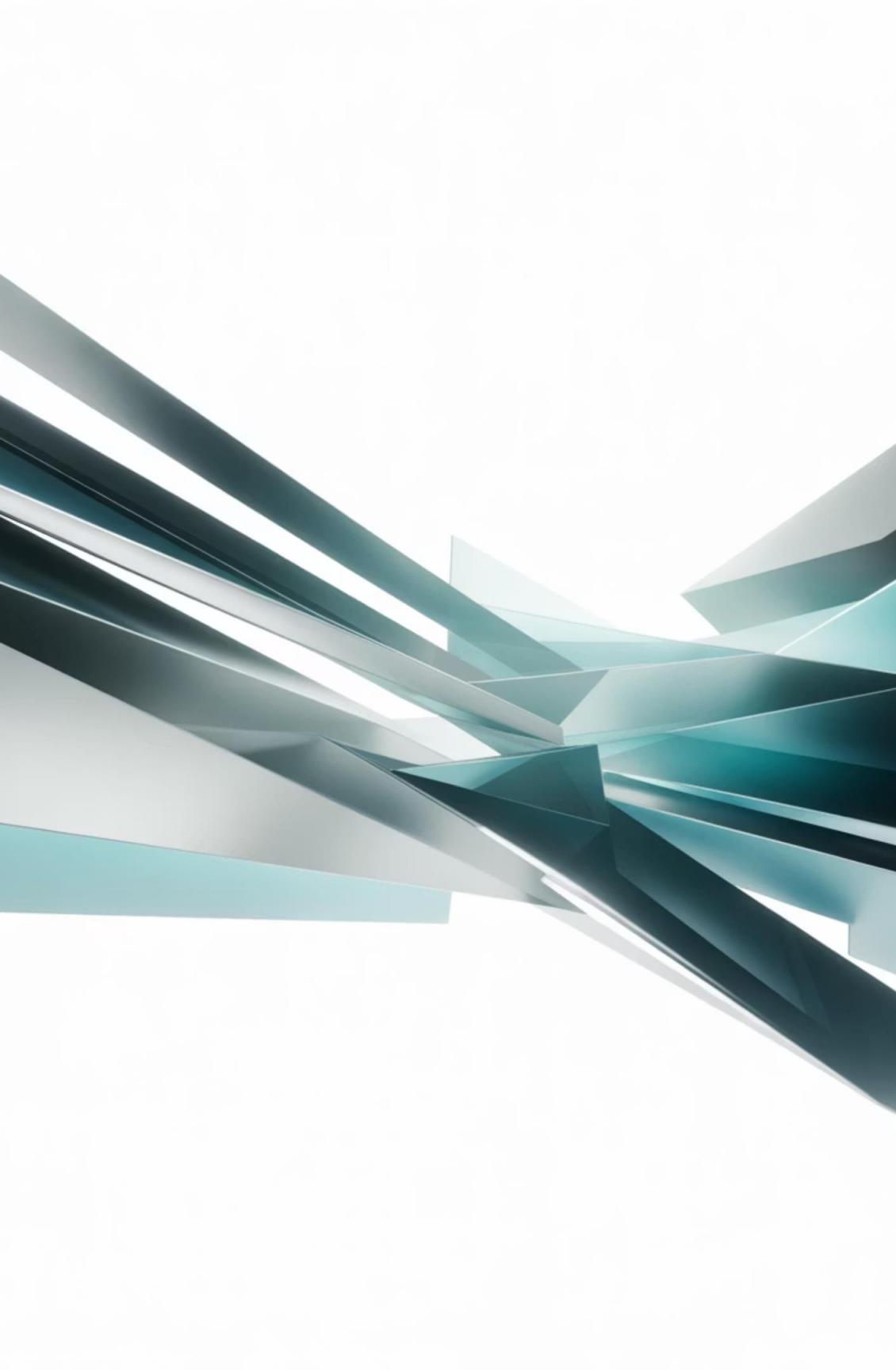
Assistant Professor
Amity University, Noida, India.

Platinum sponsors

PartnerRe

Gold sponsors

Silver sponsors



Exhibitor sponsors

Media & Supporting event partners

Freelance Actuarial Ecosystems

**A Governance-First Model for Scalable Capacity &
Quality**

Harsh Vikram Arora
Assistant Professor, Amity University
+1 954 2288279

Why This Matters Now

Demand Spikes

IFRS 17 implementation, pricing sprints, and quarterly closes create capacity peaks that exceed stable headcount

Talent Mismatch

Regional disparities in actuarial expertise and experience levels complicate staffing strategies

Budget Pressure

Cost constraints compete with quality obligations and professional responsibility requirements

Remote Reality

Distributed collaboration is the new normal, but sign-off risk and governance gaps remain

The actuarial profession faces unprecedented capacity challenges. Remote work has opened possibilities, but professional standards and regulatory scrutiny demand rigorous governance frameworks.

The Four-Tension Problem

Capacity Challenge

Work peaks consistently exceed stable headcount. Traditional hiring cycles are too slow, and maintaining excess permanent capacity is economically unsustainable.

Consistency Gap

Methods and documentation quality vary significantly across contributors. Lack of standardization creates review bottlenecks and increases rework.

Compliance Complexity

Cross-border actuarial work raises jurisdictional sign-off questions. Local regulatory requirements for certifying actuaries differ widely.

Confidentiality Controls

Model and data governance must be maintained across distributed teams. Access control and audit trails are non-negotiable for professional work.

Defining Freelance Actuarial Ecosystems

What FAEs Are

A Freelance Actuarial Ecosystem combines three critical components to deliver professional-grade distributed work:

- **Curated network** of credentialed actuaries and analysts
- **Standardized workflows** with quality gates and templates
- **Clear governance** for sign-off pathways and liability
- **Technology platform** enabling secure, auditable delivery

FAEs are **not** unstructured marketplaces or gig platforms. They represent process, people, and platform working together under professional governance standards.

Five Governance Principles

01

Right-to-Operate

Map jurisdictional sign-off requirements before work commences. No surprises at delivery time.

02

Least-Privilege Access

Grant data and model access only as needed for specific tasks. Minimize exposure systematically.

03

Two-Layer Quality Assurance

Independent peer review plus signatory oversight. Separation of build from review roles.

04

Method Standardization

Deploy templates, code libraries, and checklists. Reduce variability through systematic approaches.

05

Full Traceability

Document decisions and maintain version control. Make all work audit-reproducible from day one.

These principles anchor every operational decision and control design in the FAE model. They transform distributed work from risky to reliable.

Operating Model: Proposed Framework

Role	Responsibilities
Signatory Actuary (SA)	Defines scope, assesses materiality, provides final sign-off and bears professional responsibility
Review Actuary (RA)	Conducts independent technical review, challenges assumptions and methods, documents findings
Module Leads (ML)	Own domain areas (pricing, reserving, data, tooling), guide contributors, ensure quality standards
Contributors (C)	Execute analysis, develop code, prepare documentation under ML supervision
Project Management Office	Manages timeline, coordinates delivery, maintains issues log and risk register

Clear role separation prevents conflicts of interest and creates accountability. The critical innovation: **Independent Review Actuary** separate from the build team.

Regulatory Sign-Off Matrix

Pre-agreeing jurisdictional pathways eliminates late-stage compliance surprises and enables confident distributed work.

GI Pricing

Requirement: Thai-licensed SA or acceptable equivalent per client policy

Documentation: Letter of engagement, credential verification

IFRS 17 Reporting

Requirement: Local SA or firm endorsement for statutory filings

Documentation: Review memo, attestation letter

Research Models

Requirement: Internal technical approval, no external signatory needed

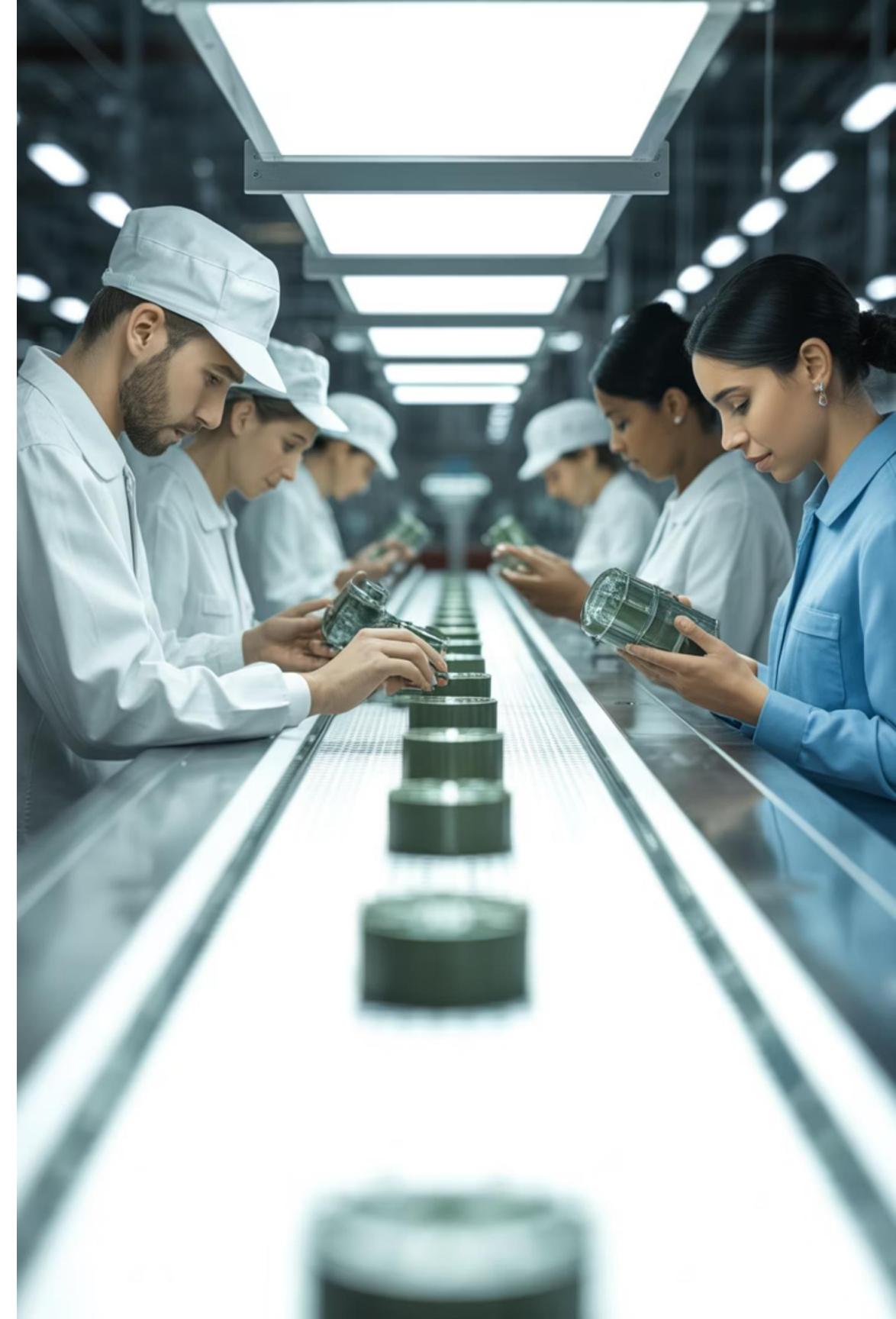
Documentation: Peer review, limitations statement

Work type, country of use, and signatory location determine the pathway. Map these *before* work starts, not during delivery crises.

Three-Gate Quality Stack

Gate 1: Credentialing

CV vetting with references, sample work review, comprehensive NDAs and background checks


Gate 2: Method QA

Standardized checklists covering data lineage, assumptions justification, back-testing, and code review

Gate 3: Sign-Off QA

Review memo preparation, issues log resolution tracking, final pack assembly and SA attestation

Each gate produces auditable artifacts stored in controlled repositories. Gates are sequential, no advancing without completion and documented approval.

Evidence Framework: Methods & Metrics

Research Design

- Multiple projects analyzed (pricing, IFRS 17 operations)
- Duration range: 6–24 weeks per engagement
- Artifacts reviewed: specs, code, memos, peer reviews, final deliverable packs

Key Performance Indicators

- Cycle time vs. baseline
- Review findings per 100 hours
- Rework hours as percentage
- Cost per deliverable
- Post sign-off defect leakage

Limitations acknowledged: Non-random project samples; varied client organizational maturity; confounding factors in productivity gains. This represents directional evidence, not controlled experiment results.

Security & Data Handling Protocols

Isolated Workspaces

Virtual Desktop Infrastructure (VDI) or VPN-only access. Zero local data storage permitted on contributor devices.

Access Control

Role-based permissions with secrets management. Regular access reviews and automatic session timeouts.

Reproducible Runs

Hash verification, versioned code repositories, locked computing environments with audit trails.

Data Minimization

Synthetic datasets for development and training. Production data access granted only when necessary.

Technical controls complement legal protections (NDAs, data processing agreements). Defense in depth across people, process, and technology layers.

Interactive Audience Poll

What is your top blocker to distributed actuarial work?

Data Security Concerns

Protecting confidential information and maintaining audit trails

Regulatory Sign-Off Uncertainty

Jurisdictional requirements and professional liability questions

QA Consistency

Maintaining standards across distributed contributors

Time Zone Coordination

Managing asynchronous collaboration effectively

Other Organizational Barriers

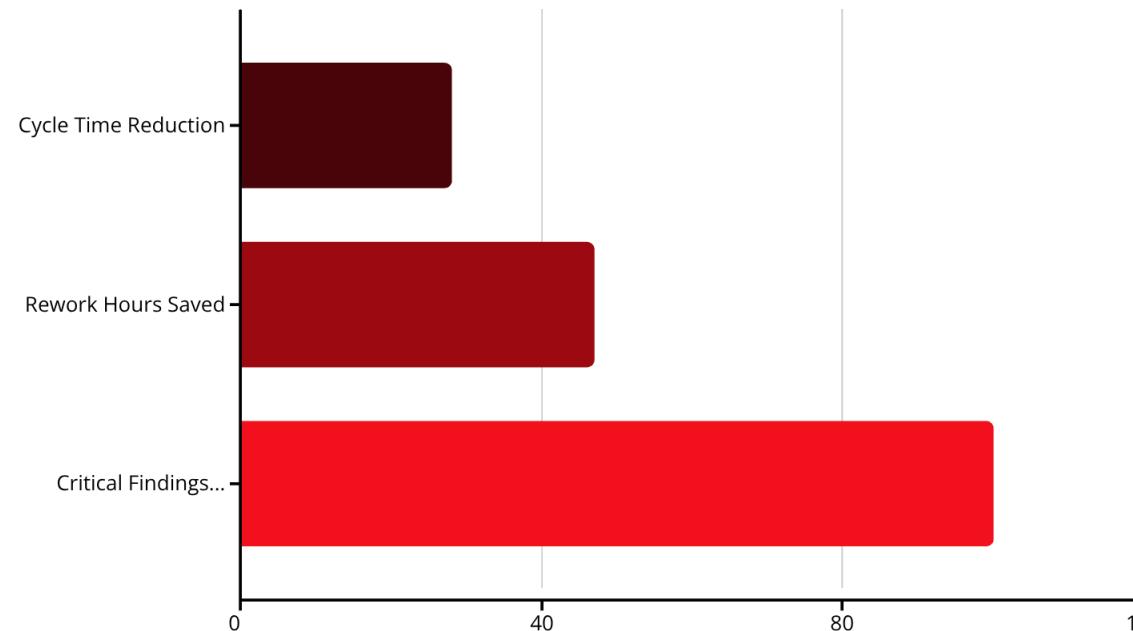
Technology infrastructure, change management, cultural factors

Results will inform emphasis in remaining discussion. Please respond now.

Case Study A: Multi-Country Pricing Sprint

Context

Mid-sized general insurance carrier executing multi-country rate refactoring across three markets simultaneously.


Team Structure

- 1 Signatory Actuary
- 1 Review Actuary
- 3 Module Leads
- 6 Contributors
- 12-week sprint duration

Governance Controls

Standard code library deployed across all markets. Model review checklist applied uniformly. Weekly findings log maintained with time-boxed resolution protocols.

Quantified Results

Rework dropped from 15% to under 8% of total hours. No critical findings at final sign-off; minor issues resolved in-sprint. **Direct causation:** standardized library plus independent RA reduced iteration cycles.

Case Study B: IFRS 17 Operations Automation

Project Scope

UAE small-to-medium enterprise requiring quarterly close pack automation under IFRS 17 standards.

Team: 1 SA, 1 ML (IFRS 17 specialist), 2 Analysts, 1 Tooling Engineer

Duration: 8 weeks initial build, ongoing quarterly execution

Control Framework

- Data contracts with validation rules
- Dual-control manual adjustments
- Reproducible computational runs
- Automated reconciliation checks

Business Impact

42%

0

Cycle Time Reduction

From 12 to 7 working days per close

Manual Journal Errors

Completely eliminated through automation

T+8

Audit Pack Ready

Complete documentation by day 8

Cost neutrality achieved in quarter one. Subsequent quarters generated savings through reduced manual effort and error correction time.

Generalizable Principles from Cases

Pre-Agree Sign-Off Pathway

Document jurisdictional requirements and signatory arrangements before project kickoff. Eliminate late-stage compliance surprises.

Codify Method Choices

Deploy templates and standard libraries instead of ad-hoc notebooks. Reduce variability through systematic approaches.

Track Issues Daily

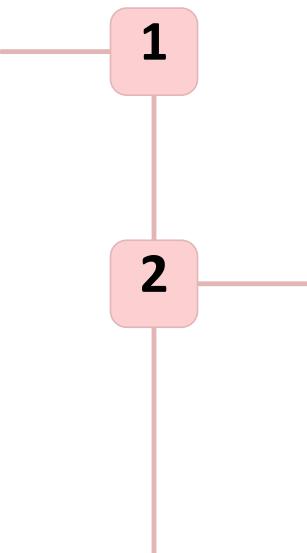
Maintain living issues log with time-boxed resolution. Escalate blockers immediately to prevent accumulation.

Separate Build from Review

Independent Review Actuary challenges work products. No self-review or dual-hat arrangements.

Produce Review Memo

Every engagement concludes with formal review memo and complete deliverable pack. No exceptions.


These patterns emerged consistently across projects of varying scope, geography, and technical complexity. They represent **reusable rules** for FAE success.

Implementation Playbook: Readiness & Onboarding

Weeks 1-3: Readiness Phase

Build compliance matrix mapping work types to sign-off requirements by jurisdiction. Establish security baseline including VDI, access logging, and monitoring. Develop standard templates for specifications, review memos, and quality checklists.

Weeks 4-7: Talent & Onboarding

Define credentialing rubric with clear acceptance criteria. Prepare NDA and data processing agreement packages. Execute shadow sprint on low-risk module with experienced contributors to validate processes.

Readiness represents one-time investment with periodic refresh as regulations evolve. Front-loading governance design prevents costly mid-flight corrections.

Implementation Playbook: Delivery & Reuse

Delivery Cadence

Weekly 15-30 minute review stand-ups. Issues log triage with defined SLAs for closure. Peer review rotation schedule. Sign-off calendar with milestone checkpoints.

Tooling Infrastructure

Shared code library with version control. Parameterized templates and documented runbooks. Automated testing and validation frameworks.

Continuous Improvement

Post-project retrospectives capture lessons. Validated components added to reusable library. Knowledge base grows with each engagement.

The cadence and library create **compounding efficiency gains**. Second and third projects leverage prior work, dramatically reducing startup friction.

Economic Model & Boundary Conditions

Cost Structure

Core team (SA, RA, PMO) represents fixed investment. Contributors provide variable capacity scaling with demand.

Reuse factor: 20-40% effort reduction after 2-3 similar projects as library matures.

Value Drivers

- Reduced rework through standardization
- Faster turnaround time
- Predictable sign-off outcomes
- Reduced vendor lock-in
- Knowledge retention in libraries

When FAEs Excel

Recurring work with reuse potential

Capacity peaks exceeding stable headcount

Multi-market work benefiting from distributed expertise

When to Avoid

One-off highly specialized tasks without reuse opportunity. Extremely small scope where onboarding cost exceeds benefit. Organizations lacking minimum technology infrastructure.

Economic viability requires honest assessment of reuse potential and organizational readiness. FAEs are not universally optimal.

Risks & Mitigation Strategies

Risk Category	Failure Mode	Mitigation Control
Regulatory	Misaligned sign-off authority discovered late	Pre-approved matrix; external counsel review for novel jurisdictions
Security	Shadow IT or data leakage incident	VDI/zero-trust architecture; quarterly access audits; endpoint monitoring
Quality	Method inconsistency across contributors	Enforce mandatory library use; change control board for deviations
Capacity	Review Actuary becomes bottleneck	Pooled RA capacity across engagements; staggered checkpoint scheduling
Continuity	Key person turnover disrupts delivery	Role backups identified; comprehensive runbooks; knowledge base maintenance

Every identified risk has assigned ownership and documented control. RAID log updated weekly during active engagements.

Implementation Readiness Checklist

Governance Foundations

- Sign-off matrix agreed and documented by jurisdiction
- RACI model defined with clear accountabilities
- Quality gates designed with artifact requirements
- Issues log and escalation protocols established

Technical Infrastructure

- Security baseline operational (VDI, access control, logging)
- Templates and code libraries installed and tested
- Version control and documentation repository configured

Operational Readiness

- Delivery cadence defined (stand-ups, reviews, sign-off calendar)
- Credentialing rubric and onboarding process validated
- Trial sprint completed with retrospective captured

Score your organization on this checklist. Address gaps before launching distributed actuarial work.

Key Takeaways & Questions

FAEs are viable when governance leads design

Evidence-Based Results

Documented TAT reductions, lower rework rates, audit-ready deliverable packs across multiple engagements

Start Small & Learn

Begin with one module, one sprint, one review memo. Build confidence through demonstrated success.

Governance Enables Scale

Upfront investment in controls, templates, and processes creates compounding returns

Questions for Discussion

How do these principles apply to your organization's specific challenges? What governance gaps exist in your current distributed work arrangements? What would a pilot engagement look like in your context?

Contact: Harsh Vikram Arora • hvarora@amity.edu