

Optimal Payoffs under smooth ambiguity

An Chen | Ulm University

6th Fudan-Ulm Symposium on Finance and Insurance, September 5-6, 2024

joint with Steven Vanduffel and Morten Wilke

Optimal investment/payoff problem

- ► The field of optimal payoffs/investment problem has been extensively researched (Merton, 1969, 1971): E[U(X_T)]
 - Risk preferences: Constant Relative Risk Aversion (CRRA) and Constant Absolute Risk Aversion (CARA)
 - Underlying asset dynamics: Geometric Brownian motions

Explanatory Slide: Payoff/Terminal Wealth vs. Investment Strategy

- ▶ Once X_T^* is determined, X_t^* for $t \in [0, T)$ can be derived using the pricing rule.
- There are two methods to express the wealth dynamics:
 - Using X_t^* , you can derive the wealth dynamics for dX_t^* .
 - Alternatively, directly express the wealth dynamics through the investment strategy.
- Compare coefficients between the two expressions of wealth dynamics to determine the investment strategy.

Abundant literature in the field

Many different streams of extensions

- developing further risk preferences, e.g. SAHARA utility by Chen et al. (2011)
- ► maximize the option-type payoffs Carpenter (2000), Chen et al. (2019), Chen et al. (2024), e.g. E[U(max(X_T - K, 0))]
- adding risk constraints to the optimization problem, e.g. Value-at-Risk, and Expected shortfall (Basak and Shapiro (2001), Chen et al. (2018a), Chen et al. (2018b))

What we do in our paper?

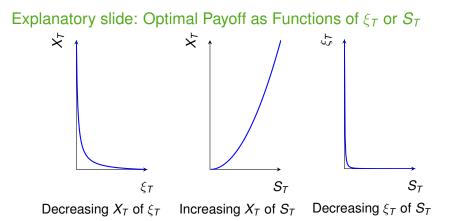
- This paper: given a static one-period financial market and an investor, we study the optimal payoff
 - KMM (Klibanoff-Marinacci-Mukerji-)Preferences, also called smooth ambiguity, (Klibanoff et al., 2005)
 - in our paper, we also consider *classical subjective expected* utility theory (CSEU) suggested by (Cerreia-Vioglio et al., 2013), special case of KMM
 - Payoff: all non-negative measurable functions of the risky asset's terminal value S_T; path-independent payoffs; non-linear payoffs allowed (c.f. e.g. Gollier (2011) for linear payoffs)

Why optimal payoffs in a static setting?

- If we allow continuous trading with zero transation costs, continuous trading shall be better.
- Optimal payoffs under smooth ambiguity in continuous-time setting (Bäuerle and Mahayni (2024))
 - drift uncertainty
 - power function of utility
 - power function describing ambiguity aversion
- We allow general utility function, general function describing the ambiguity aversion; both drift and volatility uncertainty

Main contributions

- First, we explicitly characterize and derive the optimal payoff for a CSEU and a KMM investor in our setting.
- Second, we show that a KMM investor (with second-order probabilities *w* and ambiguity attitude φ) opts for the same optimal payoff as a CSEU investor (c.f. equivalence result for linear payoffs in Taboga (2005) and Gollier (2011))
- Third, we show that optimal payoffs are not necessarily monotone in the stock price
 - providing a possible way to explain the pricing kernel puzzle



Empirical finding shows that the pricing kernel is not monotone in X_T or $S_T \rightarrow$ the pricing kernel puzzle (see e.g. Siddiqi and McMillan (2019))

No Ambiguity regarding $\mathbb P$

e.g. Expected Utility

 $\sup \mathbb{E}_{\mathbb{P}}[u(X_T)]$ s.t. $\mathbb{E}_{\mathbb{P}}[\xi_T X_T]$

where ξ_T is monotone in S_T

 $ightarrow X_T^* = I(\lambda \xi_T)$ monotone in S_T

Figure: Pricing Kernel ξ_T as a function of S_T

Ambiguity regarding \mathbb{P}

e.g. KMM utility

 $\sup \mathbb{E}_{\mathbb{P}^{\tilde{w}}}[u(X_T)] \text{ s.t. } \mathbb{E}_{\mathbb{P}^{\tilde{w}}}[\xi_T^{\tilde{w}}X_T]$

where $\xi_T^{\tilde{w}}$ might not be monotone in S_T

 $o X_T^K(w,\phi) = I(\lambda \xi_T^{\tilde{w}})$ might not be monotone in S_T

Figure: Pricing Kernel $\xi_T^{\tilde{W}}$ as a function of S_T

What comes next

- Optimal payoff under CSEU preference
- Optimal paoyff under KMM preferences
- Log-normal terminal asset prices

Financial Market

- Measurable space $(\Omega, \mathcal{F} = \sigma(S_T)), T > 0$
- Payoffs: initial budget x₀ > 0

$$\mathcal{X}(x_0) := \{X_T = g(S_T), g : \mathbb{R}_+ o \mathbb{R}_+ \text{ is } \mathcal{F} ext{-measurable}, \ \mathbb{E}_{\mathbb{Q}}[e^{-rT}X_T] = x_0 \Big\}$$

with pricing measure ${\mathbb Q}$

Investor – Risk and Uncertainty (CSEU)

First-order uncertainty (Risk) What $\omega \in \Omega$ will materialize? Second-order uncertainty (Ambiguity) How likely is each \mathbb{P}_i ?

Second-order uncertainty modelling with \mathcal{P} and w

Set of plausible probability measures

$$\mathcal{P} := \{\mathbb{P}_1, \ldots, \mathbb{P}_n\}, n \in \mathbb{N}.$$

Second-order probabilities: Investor's confidence in each \mathbb{P}_i

$$\sum_{i=1}^n w_i = 1.$$

Risk attitude – Risk Aversion

The utility function $u : [0, \infty) \to \mathbb{R}$ satisfies the following properties:

- ▶ is strictly increasing (u'(x) > 0) and strictly concave (u''(x) < 0), and twice continously differentiable on [0,∞)</p>
- satisfies the Inada conditions, i.e.,

$$\lim_{x\to 0} u'(x) = \infty \text{ and } \lim_{x\to \infty} u'(x) = 0.$$

Classical-Subjective-Expected-Utility (Cerreia-Vioglio et al., 2013)

Given some payoff $X_T \in \mathcal{X}(x_0)$ the investor computes the CSEU utility

$$\mathcal{C}(X_T) = \sum_{i=1}^n w_i \cdot \mathbb{E}_{\mathbb{P}_i}[u(X_T)].$$

CSEU Problem

Given the initial budget $x_0 > 0$ the CSEU investor deems a payoff $X_T^{\mathcal{C}}(w) \in \mathcal{X}(x_0)$ optimal if it maximizes the CSEU utility, i.e.,

$$X^{\mathcal{C}}_{T}(w) = argmax_{X_{T} \in \mathcal{X}(x_{0})}\mathcal{C}(X_{T}).$$

Optimal Payoff $X_T^{\mathcal{C}}$ under CSEU-Preferences

Proposition 1 (CSEU optimal payoff)

The optimal payoff under CSEU-preferences is given by

$$X_T^{\mathcal{C}}(w) = (u')^{-1} \left(\lambda \xi_T^w\right) := I(\lambda \xi_T^w)$$

where

- 1. $I(y) := (u')^{-1}(y), y > 0$ is the inverse of the marginal utility,
- 2. $\lambda > 0$ is chosen such that $X_T^{\mathcal{C}}(w) \in \mathcal{X}(x_0)$,
- 3. $\xi_T^w := \frac{e^{-rT}}{\sum_{i=1}^n w_i \cdot \mathbb{P}_i}$ is the subjective pricing kernel with $I_{\mathbb{P}_i} := \frac{d\mathbb{P}_i}{d\mathbb{Q}}$ as the likelihood ratio of \mathbb{P}_i w.r.t. \mathbb{Q} .

Optimal Payoff X_T^C under CSEU-Preferences – Proof Note that CSEU problem can then be rewritten as

$$\sup_{X_{T}\in\mathcal{X}(x_{0})}\sum_{i=1}^{n}w_{i}\mathbb{E}_{\mathbb{P}_{i}}[u(X_{T})] = \sup_{X_{T}\in\mathcal{X}(x_{0})}\int_{\Omega}u(X_{T}(\omega)) d\underbrace{\left(\sum_{i=1}^{n}w_{i}\mathbb{P}_{i}(\omega)\right)}_{=:\mathbb{P}^{w}}$$
$$= \sup_{X_{T}\in\mathcal{X}(x_{0})}\mathbb{E}_{\mathbb{P}^{w}}[u(X_{T})].$$

with budget constraint $x_0 = \mathbb{E}_{\mathbb{Q}}[e^{-rT}X_T] = \mathbb{E}_{\mathbb{P}^w}[\xi_T^w X_T]$ where

$$\xi_T^{\boldsymbol{w}} := \boldsymbol{e}^{-rT} \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}^{\boldsymbol{w}}} = \frac{\boldsymbol{e}^{-rT}}{\sum_{i=1}^n \boldsymbol{w}_i \boldsymbol{h}_{\mathbb{P}_i}}$$

is the **subjective pricing kernel**. Use Cox and Huang (1989) to arrive at

$$X_T^{\mathcal{C}}(w) = I(\lambda \xi_T^w).$$

What comes next

- Optimal payoff under CSEU preference
- Optimal paoyff under KMM preferences
- Log-normal terminal asset prices

Investor - Risk and Ambiguity Attitude (under Smooth Ambiguity)

Risk Attitude – Risk Aversion The utility function $u : [0, \infty) \rightarrow \mathbb{R}$

- Is strictly increasing (u'(x) > 0) and strictly concave (u''(x) < 0), and twice continously differentiable on [0,∞)</p>
- satisfies the Inada conditions, i.e.,

$$\lim_{x\to 0} u'(x) = \infty \text{ and } \lim_{x\to \infty} u'(x) = 0.$$

Ambiguity Attitude – Ambiguity Aversion

The function ϕ describing ambiguity attitude is strictly increasing $(\phi'(U) > 0)$, and strictly concave $(\phi''(U) < 0)$ and twice continuously differentiable.

Investor – KMM Preferences (Klibanoff et al., 2005)

Given some payoff $X_T \in \mathcal{X}(x_0)$ the investor computes the KMM utility by

$$\mathcal{K}(X_T) = \sum_{i=1}^n w_i \cdot \phi(\mathbb{E}_{\mathbb{P}_i}[u(X_T)]).$$

KMM Problem

Given the initial budget $x_0 > 0$ the KMM investor deems a payoff $X_T^{\mathcal{K}}(w, \phi) \in \mathcal{X}(x_0)$ optimal if it maximizes the KMM utility, i.e.,

$$X_T^{\mathcal{K}}(w,\phi) = argmax_{X_T \in \mathcal{X}(x_0)}\mathcal{K}(X_T).$$

Characterization of Optimal Payoff $X_T^{\mathcal{K}}(w, \phi)$ A payoff $X_T^{\mathcal{K}}(w, \phi) \in \mathcal{X}(x_0)$ is KMM-optimal if and only if

$$\sum_{i=1}^{n} w_i \phi'(\mathbb{E}_{\mathbb{P}_i}[u(X_T^{\mathcal{K}}(w,\phi)]) \cdot d_{X_T - X_T^{\mathcal{K}}(w,\phi)}(\mathrm{EU}_i)(X_T^{\mathcal{K}}(w,\phi)) \leq 0,$$

for all
$$X_T \in \mathcal{X}(x_0)$$
 where

$$d_{X_T - X_T^{\mathcal{K}}(w,\phi)}(\mathrm{EU}_i)(X_T^{\mathcal{K}}(w,\phi))$$

$$= \lim_{\epsilon \to 0} \frac{\mathbb{E}_i[u(X_T^{\mathcal{K}}(w,\phi) + \epsilon(X_T - X_T^{\mathcal{K}}(w,\phi)))] - \mathbb{E}_{\mathbb{P}_i}[u(X_T^{\mathcal{K}}(w,\phi)))]}{\epsilon}$$

denotes the Gateaux-differential of the functional

$$\mathrm{EU}_i: \mathcal{X} \to \mathbb{R}, X_T \to \mathbb{E}_{\mathbb{P}_i}[u(X_T))]$$

at $X_T^{\mathcal{K}}(w, \phi)$ in the direction of $X_T - X_T^{\mathcal{K}}(w, \phi)$.

Optimal Payoff $X_T^{\mathcal{K}}(w, \phi)$

Consider a KMM investor with utility function u, first-order probability measures in \mathcal{P} , second-order probabilities w, ambiguity attitude ϕ , and initial budget $x_0 > 0$. Assume that there exist second-order probabilities \tilde{w} and w which solve

$$\begin{split} \textbf{w}_{i} &= \kappa \cdot \frac{\tilde{w}_{i}}{\phi'(\mathbb{E}_{\mathbb{P}_{i}}[u(X_{T}^{\mathcal{C}}(\tilde{w}))])}, \\ \text{where } \kappa := \left(\sum_{j=1}^{n} \frac{\tilde{w}_{j}}{\phi'(\mathbb{E}_{\mathbb{P}_{j}}[u(X_{T}^{\mathcal{C}}(\tilde{w}))])}\right)^{-1} \text{ and } \sum_{i=1}^{n} w_{i} = 1. \text{ Then a} \\ \text{KMM-optimal payoff } X_{T}^{\mathcal{K}}(w, \phi) \text{ is given by} \\ X_{T}^{\mathcal{K}}(w, \phi) &= X_{T}^{\mathcal{C}}(\tilde{w}). \end{split}$$

We call \tilde{w} therefore CSEU-corresponding second-order probabilities.

Similar results in different settings by Gollier (2011), Guan et al. (2022) for linear payoffs

Monotonicity of the Optimal Payoff $X_T^{\mathcal{K}}(w, \phi)$ in S_T ?

$$X_T^{\mathcal{K}}(\boldsymbol{w}, \phi) = X_T^{\mathcal{C}}(\tilde{\boldsymbol{w}}) = I\left(\lambda \frac{\boldsymbol{e}^{-rT}}{\sum_{i=1}^n \tilde{\boldsymbol{w}}_i \boldsymbol{h}_{\mathbb{P}_i}}\right)$$

Remark 1 (Likelihood ratios if $\mathcal{F} = \sigma(S_T)$) Let S_T have density $f^{\mathbb{P}_i} > 0$ and $f^{\mathbb{Q}} > 0$ under \mathbb{P}_i and \mathbb{Q} , respectively. Then, if $\mathcal{F} = \sigma(S_T)$, we have for i = 1, ..., n that

$$I_{\mathbb{P}_i} = \frac{\mathrm{d}\mathbb{P}_i}{\mathrm{d}\mathbb{Q}} = \frac{f^{\mathbb{P}_i}(S_T)}{f^{\mathbb{Q}}(S_T)}.$$

Monotonicity of the Optimal Payoff $X_T^{\mathcal{K}}(w, \phi)$ in S_T ?

Proposition (Monotonicity of $X_T^{\mathcal{K}}(w, \phi)$)

If the subjective pricing kernel

$$\xi_T^{\tilde{w}} = e^{-rT} \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}^{\tilde{w}}} = \frac{e^{-rT}}{\sum_{i=1} \tilde{w}_i I_{\mathbb{P}_i}}$$

is not monotone in S_T , then the optimal payoff

$$X_T^{\mathcal{K}}(\boldsymbol{w},\phi) = X_T^{\mathcal{C}}(\tilde{\boldsymbol{w}}) = I(\lambda \xi_T^{\tilde{\boldsymbol{w}}}),$$

is not monotone in S_T .

What comes next

- Optimal payoff under CSEU preference
- Optimal paoyff under KMM preferences
- Log-normal terminal asset prices

Lognormal Market Asset - Setup

Observe stock price with maturity T and volatility $\sigma_{\mathbb{Q}}$ of

$$S_T \stackrel{\mathbb{Q}}{\sim} \operatorname{LN}(rT - 1/2\sigma_{\mathbb{Q}}^2T, \sigma_{\mathbb{Q}}^2T)$$

Agent's first-order probability measures: $\mathcal{P} = \{\mathbb{P}_o, \mathbb{P}_p\}$ with

$$S_T \stackrel{\mathbb{P}_o}{\sim} \mathrm{LN}(\mu_o T - 1/2\sigma_o^2 T, \sigma_o^2 T)$$
$$S_T \stackrel{\mathbb{P}_p}{\sim} \mathrm{LN}(\mu_p T - 1/2\sigma_p^2 T, \sigma_p^2 T)$$

with $\mu_o > \mu_p > r$ and $\sigma_o \leq \sigma_p$.¹

Agent's second-order probabilities: $w_p \in (0, 1)$ and $w_o = 1 - w_p$.

¹ In principle, the following analysis can also be conducted for $\sigma_p < \sigma_o$.

Monotonicity of Subjective Pricing Kernel $\xi_T^{\tilde{w}}$

Let $i \in \{p, o\}$ and $\mu_i > r$ and $\sigma_p \ge \sigma_o$. Then the subjective pricing kernel

$$\xi_T^{\tilde{w}} = \boldsymbol{e}^{-rT} \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}^{\tilde{w}}}$$

for some second-order beliefs $\tilde{w} = (\tilde{w}_{p}, \tilde{w}_{o})$ is

- strictly decreasing in S_T if $\sigma_o = \sigma_p = \sigma_Q$,
- strictly decreasing in S_T for S_T < min(s^{*}_p, s^{*}_o) and strictly increasing in S_T for S_T > max(s^{*}_p, s^{*}_o) if σ_o < σ_p < σ_Q,
- strictly increasing in S_T for S_T < min(s^{*}_p, s^{*}_o) and strictly decreasing in S_T for S_T > max(s^{*}_p, s^{*}_o) if σ_Q < σ_o < σ_p.

where

$$\mathbf{s}_i^* = \exp\left(\frac{\mathbf{r}\sigma_i^2 - \mu_i\sigma_{\mathbb{Q}}^2}{\sigma_i^2 - \sigma_{\mathbb{Q}}^2}\mathbf{T}\right), \quad \sigma_i \neq \sigma_{\mathbb{Q}}.$$

Numerical Example

- first-order beliefs: $\mathcal{P} = \{\mathbb{P}_{p}, \mathbb{P}_{o}\}$
- ▶ second-order beliefs: $w_p = 20\%$, $w_o = 80\%$
- risk attitude: $u(x) = \frac{x^{1-\gamma}}{1-\gamma}$, $\gamma = 0.5$
- ambiguity attitude: $\phi(U) = -e^{-\eta U}$, $\eta = 1$
- ▶ risk-free interest rate: r = 2%
- volatility of S_T under \mathbb{Q} : $\sigma_{\mathbb{Q}} = 20\%$

Change of weights $w \to \tilde{w}$

$$\mathcal{P} = \{\mathbb{P}_{p}, \mathbb{P}_{o}\}, \sigma_{o} = \sigma_{p} = \sigma_{\mathbb{Q}} = 20\%, w = (w_{p}, w_{o}) = (20\%, 80\%), \\ \phi(U) = -e^{-\eta U}, \eta > 0$$

η	<i></i> w _p (%)	<i>W</i> ₀ (%)
1	20.77	79.23
10	28.32	71.68
100	87.67	12.33
∞	100.00	0.00

Table: CSEU-corresponding \tilde{w} as a function of ambiguity aversion η

One-period model with Log-Normal Market Asset

No Ambiguity regarding $\mathbb P$

e.g. Expected Utility

 $\sup \mathbb{E}_{\mathbb{P}}[u(X_T)] \text{ s.t. } \mathbb{E}_{\mathbb{P}}[\xi_T X_T]$

where ξ_T is monotone in S_T

 $ightarrow X_T^* = I(\lambda \xi_T)$ monotone in S_T Ambiguity regarding \mathbb{P}

e.g. KMM utility

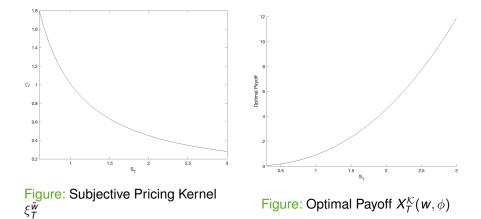
 $\sup \mathbb{E}_{\mathbb{P}^{\tilde{w}}}[u(X_T)] \text{ s.t. } \mathbb{E}_{\mathbb{P}^{\tilde{w}}}[\xi_T^{\tilde{w}}X_T]$

where $\xi_{T}^{\tilde{w}}$ might not be monotone in S_{T}

 $\rightarrow X_T^K(\boldsymbol{w}, \phi) = I(\lambda \xi_T^{\tilde{\boldsymbol{w}}})$ might not be monotone in S_T

Drift uncertainty

$$\mu_o - r = 5\%$$
 and $\mu_p - r = 3\%$, $\sigma_o = \sigma_p = \sigma_{\mathbb{Q}} = 20\%$



Volatility uncertainty

$$\mu_o - r = 5\%$$
 and $\mu_p - r = 3\%$, $\sigma_o = 18\%$, $\sigma_p = 19\%$, $\sigma_{\mathbb{Q}} = 20\%$

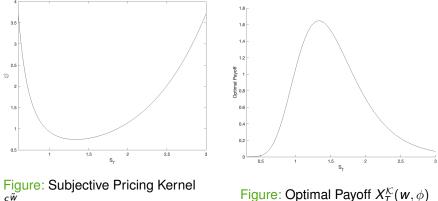


Figure: Subjective Pricing Kernel $\xi_{T}^{\tilde{w}}$

Conclusions

- Optimal payoff under CSEU preference
 - Explicit form
- Optimal paoyff under KMM preferences
 - Equivalent to CSEU solution
- Optimal payoff is not necessarily monotone in S_T
 - providing a possible way to explain the pricing kernel puzzle

For more details see

"Optimal Payoffs under Smooth Ambiguity" on EJOR

References I

- Basak, S. and Shapiro, A. (2001). Value-at-risk-based risk management: optimal policies and asset prices. The review of financial studies, 14(2):371–405.
- Bäuerle, N. and Mahayni, A. (2024). Optimal investment in ambiguous financial markets with learning. Technical report, https://arxiv.org/abs/2303.08521.
- Carpenter, J. N. (2000). Does option compensation increase managerial risk appetite? *The journal of finance*, 55(5):2311–2331.
- Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and Montrucchio, L. (2013). Classical subjective expected utility. Proceedings of the National Academy of Sciences of the United States of America, 110(17):6754–6759.
- Chen, A., Hieber, P., and Nguyen, T. (2019). Constrained non-concave utility maximization: An application to life insurance contracts with guarantees. *European Journal of Operational Research*, 273(3):1119–1135.
- Chen, A., Nguyen, T., and Stadje, M. (2018a). Optimal investment under var-regulation and minimum insurance. Insurance: Mathematics and Economics, 79:194–209.
- Chen, A., Nguyen, T., and Stadje, M. (2018b). Risk management with multiple var constraints. Mathematical Methods of Operations Research, 88(2):297–337.
- Chen, A., Pelsser, A., and Vellekoop, M. (2011). Modeling non-monotone risk aversion using sahara utility functions. *Journal of Economic Theory*, 146(5):2075–2092.
- Chen, A., Stadje, M., and Zhang, F. (2024). On the equivalence between value-at-risk-and expected shortfall-based risk measures in non-concave optimization. Accepted by Insurance: Mathematics and Economics.
- Cox, J. C. and Huang, C.-f. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion process. *Journal of economic theory*, 49(1):33–83.
- Gollier, C. (2011). Portfolio choices and asset prices: The comparative statics of ambiguity aversion. The Review of Economic Studies, 78(4):1329–1344.

References II

- Guan, G., Liang, Z., and Song, Y. (2022). The continuous-time pre-commitment kmm problem in incomplete markets. Working Paper, https://arxiv.org/abs/2210.13833.
- Klibanoff, P., Marinacci, M., and Mukerji, S. (2005). A smooth model of decision making under ambiguity. *Econometrica*, 73(6):1849–1892.
- Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The Review of Economics and Statistics, 51(3):247–257.
- Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. *Journal of Economic Theory*, 4(3):373–413.
- Siddiqi, H., Q. J. and McMillan, D. (2019). The pricing kernel puzzle: A behavioral explanation. Cogent Economics & Finance, 7(1), 7(1).
- Taboga, M. (2005). Portfolio selection with two-stage preferences. Finance Research Letters, 2(3):152–164.

Thank you very much for your attention!

Prof. Dr. An Chen

Institut für Versicherungswissenschaften Universität Ulm E-Mail: an.chen@uni-ulm.de

$\begin{array}{c} {\sf Proof} \\ {\it X}^{\cal C}_{T}(\tilde{\it w}) \in {\cal X}({\it x}_{0}) \text{ satisfies} \end{array}$

$$\sum_{i=1}^{n} \tilde{w}_{i} \cdot d_{X_{T} - X_{T}^{\mathcal{L}}(\tilde{w})}(\mathrm{EU}_{i})(X_{T}^{\mathcal{L}}(\tilde{w})) \leq 0,$$
(1)

$$X_T^{\mathcal{K}}(w, \phi)$$
 satisfies

$$\sum_{i=1}^{n} w_i \phi'(\mathbb{E}_{\mathbb{P}_i}[u(X_T^{\mathcal{K}}(w,\phi))]) \cdot d_{X_T - X_T^{\mathcal{K}}(w,\phi)}(\mathrm{EU}_i)(X_T^{\mathcal{K}}(w,\phi)) \le 0.$$
⁽²⁾

Choose now

=

$$w_i = \kappa \cdot \frac{\widetilde{w}_i}{\phi'(\mathbb{E}_{\mathbb{P}_i}[u(X_T^{\mathcal{C}}(\widetilde{w}))])},$$

where $\kappa := \left(\sum_{j=1}^{n} \frac{\tilde{w}_j}{\phi'(\mathbb{E}_{\mathbb{P}_j}[u(X_T^{\mathbb{C}}(\tilde{w}))])}\right)^{-1}$ and $\sum_{i=1}^{n} w_i = 1$ and $w_i \in [0, 1]$ because $\phi'(\cdot) > 0$. Then inequality (2) is equivalent to

$$\begin{split} &\sum_{i=1}^{n} \kappa \cdot \frac{\tilde{w}_{i}}{\phi'(\mathbb{E}_{\mathbb{P}_{i}}[u(X_{T}^{\mathcal{C}}(\tilde{w}))])} \cdot \phi'(\mathbb{E}_{\mathbb{P}_{i}}[u(X_{T}^{\mathcal{K}}(w,\phi))]) \cdot d_{X_{T}-X_{T}^{\mathcal{K}}(w,\phi)}(\mathrm{EU}_{i})(X_{T}^{\mathcal{K}}(w,\phi)) \leq 0. \\ & \Rightarrow X_{T}^{\mathcal{K}}(w,\phi) = X_{T}^{\mathcal{C}}(\tilde{w}). \end{split}$$