

Conference in Celebration of David Wilkie's 90th Birthday

Doctor of Mathematics Honoris Causa University of Waterloo, June 2002

TARGET BENEFIT PENSION PLANS

Some numerical experiments

Mary Hardy with David Saunders and Mike Xiaobai Zhu

Outline

- > What's wrong with DB / DC?
- Benefit design criteria
- Model pension plans
- Numerical experiments for DB and Adjustable DB

Conclusions

Defined Benefit (Traditional)

Retirement income at retirement is

Accrual Rate x Service x Average Salary

- Typical accrual rates are 1.25%-2.0%
- Contribution rate adjusted to meet cost of benefits
- Default risk -- often ignored

Fixed benefits, variable contributions.

Defined Contribution

- Contributions of, say, c% of salary paid into individual accounts
- Invested at worker's discretion
- Accrued contributions paid out at retirement
 - May be converted to income through annuity purchase

Fixed contributions, variable benefits.

US Average Pension Contribution per \$1 median income

Illustrative DC Replacement Rates

Benefit design criteria

> Affordable

Limit cost to, eg, 25% of pay

Sustainable

Mitigate volatility

Efficient

No big surpluses; no windfall benefits

> Adequate

> predictable, inflation/longevity protected, portable

Fair

Equal pension for equal work/contribution

Target Benefit plans

Collective DC

DC with risk sharing

Eg through an Equalization Reserve

> Adjustable DB

> DB, with option to adjust benefits (down)

Also called Defined Ambition or Intergenerational Risk Sharing (IRS).

NUMERICAL EXPERIMENTS

Traditional DB vs Adjustable DB

Numerical Experiments

- Going concern plan
- > Demographics \approx University of Waterloo
- Assets and inflation ~ Wilkie Model, calibrated to US data (Zhang et al 2018)
- DB vs TB (Adjustable DB)

Model DB Plan

- > 1.8% accrual rate; 3-year FAS plan.
- COLA up to 3%, funded;

➢ lost on wind-up.

- PUC (partial) funding valuation; TUC solvency
- All contributions from workers' pay
- Invested 60% stocks, 40% long bonds
- Normal Contribution rate 2 18.5%

DB Funding strategy

- Funding A/L > 1.2 Contributions reduced
- Solvency A/L < 1.0 2 contributions increased,</p>
- > 30% cap on total contribution rates (TCR)
- Wind-up triggered if solvency A/L < 0.5</p>
 - Accrued benefits reduced pro-rata
 - Bulk-buy-out I no further risk

Model TB Plan

- Target benefits, valuations, assets, as for DB
- Same wind-up threshold (Solvency A/L < 0.5)</p>
- No TCR cap
- Funding A/L > 1.2 Isurplus distributed
 - Based on 5-year recovery period
- Solvency A/L < 1.0 2 deficit recouped</p>
 - Based on 10-year recovery period

TB: risk sharing formula

$\alpha_{d/s}(t) + \beta_{d/s}(t)$ is the proportion of deficit/surplus distributed

$\alpha_{d/s}(t)$ is the workers' share of deficit/surplus $\beta_{d/s}(t)$ is the retiree's share of deficit/surplus

 $\frac{\alpha_s(t)}{\beta_s(t)} = \frac{\alpha_d(t)}{\beta_d(t)} = \frac{\text{Total Salaries at } t}{\text{Total Target Benefits at } t}$

TB Deficit Sharing: actives

TB Deficit Sharing: Retirees

Funding Valuation A/L

Year

Wilkiefest 11/4/24

Solvency Valuation A/L

Year

Total Contribution Rate

Comparison metrics

- Probability of wind-up
 - Sustainability, adequacy, efficiency, fairness
- Average total contribution rate
 - > Affordability
- Income stability compares actual and target income
 - > Adequacy, fairness, efficiency
- Plotted across a range of equity weighting

Wind-up Risk by equity weighting

Average TCR by equity weighting

Notes on income stability (IS)

- IS² is the average squared disparity of actual and target income.
- Low values are better
- Positive and negative disparities are penalised equally
- Calculated by cohort
- Similar to the objective function used in theory papers

Wilkiefest 11/4/24

Wilkiefest 11/4/24

Wilkiefest 11/4/24

DB vs TB (Adjustable DB)

- ➢ Affordability: TB ☑ DB
- Sustainability: TB 🛛 DB
- Efficiency: IRS 2 DB
- > Adequacy: IRS > DB
- Fairness:
 - > Blue collar vs white collar

Non-salaried (blue-collar) employees

- Identical demographics
- Flat salary scale from age 30
- Inflationary wage increases only

	Default Rate	Average TCR
DB Salaried	4.9%	18.5%
DB Non-salaried	0.2%	14.4%
	Default Rate	Average TCR
TB Salaried	Default Rate 1.2%	Average TCR 18.3%

Non-salaried (blue-collar) employees

Allowing for longevity difference

	Default Rate	Average TCR
DB Salaried	4.9%	18.5%
DB Non-salaried	0.0%	12.6%

	Default Rate	Average TCR
TB Salaried	1.2%	18.3%
TB Non-salaried	0.0%	13.0%

Conclusions (1): usefulness of theory

- Theoretical results pointed to:
 - > appropriate risk sharing mechanism
 - > parameter constraints and relationships
 - > the income stability metric
 - > fair transition process

Conclusions(2): TB plan advantages

- TB with linear risk sharing is
 - > Transparent,
 - Relatively robust
 - Surprisingly effective
- TB dominates DB on affordability, sustainability, efficiency (based on strong modelling assumptions)
- Allowing for default risk, TB may dominate DB on adequacy

Conclusions (3): More work required

- TB does not much mitigate blue-collar/white collar inequity
- But TB + CARE helps.
- To be further investigated
 - Fairness of discretionary COLA
 - Fairness between stayers and leavers

QUESTIONS?

Selected References

- Hardy MR, Saunders D, Zhu XM. (2020). Risk Sharing Pension Plans: Sustainability, Affordability, Adequacy, and Fairness. National Pension Hub Publication.
- Zhu XM, Hardy MR, and Saunders D (2020a). Structure of Intergenerational Risk-Sharing Plans: Optimality and Fairness. Scandinavian Actuarial Journal (forthcoming).
- Zhu XM, Hardy MR, Saunders D (2020b). Fair transition from a defined benefit to a target benefit pension plan. SSRN (forthcoming).
- Cui J, De Jong F, Ponds E (2011). Intergenerational risk sharing within funded pension schemes. Journal of Pension Economics & Finance, 10(1).
- Gollier C (2008). Intergenerational risk-sharing and risk-taking of a pension fund." Journal of Public Economics, 92(5-6).
- Wang S, Lu Y, Sanders B (2018). Optimal investment strategies and intergenerational risk sharing for target benefit pension plans. Insurance: Mathematics and Economics, 80.

Income stability

- > Let $AI_{y,t}$, $TI_{y,t}$ denote the actual and target income for (y) at time t.
- > For lives age x at t = 0 we have:

$$IS_{x} = \begin{cases} \frac{100}{S(x,0)} \sqrt{\frac{1}{30} \sum_{t=1}^{30} \left(AI_{x+t,t} - TI_{x+t,t}\right)^{2}} & \text{for } x \le 64 \\ \\ \frac{50}{B(x,0)} \sqrt{\frac{1}{30} \sum_{t=1}^{30} \left(AI_{x+t,t} - TI_{x+t,t}\right)^{2}} & \text{for } x \ge 65 \end{cases}$$

Career Average Revalued Earnings

- > Ameliorates unfairness problem with FAS plans
- Popular for DB risk reducing in Europe
 - > eg, UK university plan
- Modelled with the same assumptions as before
 - > Accrued benefit revalued in line with pensions
 - > Assume 1.8% and 2.0% accrual
 - Ignore longevity differential

Average TCR

