# INSURANCE AND ACTUARIAL ENGINEERING Prime Re Solutions

Tariffing a Nuclear Cover ASTIN Colloquium, São Paulo 2025



#### Swissnuclear Szenarien

- Beschreibung des EVT-basierten Experten Models
- Unabhängige Validierung
- Zeitplan



#### **The Swiss Nuclear Pool**

- Legal foundations
  - Paris and Brussels Conventions on TPL in the field of nuclear energy
    - establish rules and compensation mechanisms in the event of nuclear accidents
    - ensure that affected parties can seek damages
- Signatories
  - all European countries with nuclear power plants
- Covers
  - 70 1'200 MEUR
  - Depend on intricate combinations of
    - 4 types of exposures
    - 5 triggers
    - 3 impacts

# Exposures, triggers and impacts

3 x 4 x 5 = 60 covers



## **The Swiss Nuclear Pool**

- Legal foundations
  - Paris and Brussels Conventions on TPL in the field of nuclear energy
    - · establish rules and compensation mechanisms in the event of nuclear accidents
    - ensure that affected parties can seek damages
- Signatories
  - all European countries with nuclear power plants
- Covers
  - 70 1'200 MEUR
  - Depend on intricate combinations of
    - 4 types of exposures (where)
    - 5 triggers (how)
    - 3 impacts (what)
- Insurers of the Swiss nuclear exposures
  - Swiss Nuclear Pool covers the basis (Zurich, Swiss Re, Helvetia, Allianz, SCOR, ...)
  - Swiss Federation covers what the Pool doesn't

# Exposures, triggers and impacts

3 x 4 x 5 = 60 covers





#### Exposures

- Nuclear facilities
  - Power plants
    - Beznau 1 (PWR)
    - Beznau 2 (PWR)
    - Gösgen (PWR)
    - Leibstadt (BWR)
  - 1 storage facility of burnt fuel rods
- Transport high radioactivity
  - Burnt fuel rods
- Research facilities
  - Paul Scherrer Institute
- Transport low radioactivity
  - Clothing, pipes, ...





- Swiss Nuclear Pool
  - One premium per exposure
  - No details about allocation to triggers and impacts

- Swiss Federation
  - Currently crude tariffs
    - Any loss = total loss
    - $\Rightarrow \text{frequency model}$
    - Calibration to implicit frequencies from Swiss Nuclear Pool premiums
  - Soon actuarial tariffs (facultative excess-of-loss reinsurance)
    - All losses pareto distributed
    - $\Rightarrow$  EVT collective frequency-severity model
    - Calibration to scenarios provided by Swissnuclear



# Severity model

- X = severity
  - Random variable
    - total loss distribution





# Severity model

- X = severity
  - Random variable
    - total loss distribution
    - Discrete distribution



#### Severity model

- X = severity
  - Random variable
    - total loss distribution
    - Discrete distribution
    - Pareto distribution

$$\mathbb{P}[X \le x] = 1 - \left(\frac{T}{T+x}\right)^{\alpha}$$



#### **Insured** loss

- X = severity
  - Random variable
    - total loss distribution
    - Discrete distribution
    - Pareto distribution

$$\mathbb{P}[X \le x] = 1 - \left(\frac{T}{T+x}\right)^{\alpha}$$

- Y = insured loss with
  - Deductible D
  - Exhaustion E

$$Y = L_{D,E}(X) = \begin{cases} X \le D : & 0 \\ D < X < E : & X - D \\ E \le X : & E - D \end{cases}$$





Aggregate annual insured loss



- X = severity
- N =frequency

Pareto distributed:  $\mathbb{P}[X \le x] = 1 - \left(\frac{T}{T+x}\right)^{\alpha}$ Poisson distributed:  $\mathbb{P}[N = n] = \frac{\lambda^n e^{-\lambda}}{n!}$ 

Premium P = expected loss + risk margin





• X = severity

N =frequency

- Aggregate annual insured loss
- random variable  $S = \sum_{i}^{N} Y = \sum_{i}^{N} L_{D,E} (X)$ Pareto distributed:  $\mathbb{P}[X \le x] = 1 - \left(\frac{T}{T+x}\right)^{\alpha}$ Poisson distributed:  $\mathbb{P}[N = n] = \frac{\lambda^n e^{-\lambda}}{n!}$ Premium P = expected loss + risk margin analytic formula 🙂  $= \mu[S] + \rho \cdot \sigma[S]$

 $= \mu[N] \cdot \mu[Y] + \rho \cdot \sqrt{\mu[N] \cdot \mu[Y^2]}$ 

Experts for Experts

• 
$$P = \lambda \cdot \frac{T^{\alpha}}{\alpha - 1} \cdot \left[ (D + T)^{1 - \alpha} - (E + T)^{1 - \alpha} \right]$$

$$+ \rho \cdot \sqrt{\lambda \cdot \frac{2T^{\alpha}}{(\alpha - 1)(\alpha - 2)}} \cdot \left[ (D + T)^{2 - \alpha} - (\alpha - 1) \cdot (E + T)^{2 - \alpha} + (\alpha - 2) \cdot (D + T) \cdot (E + T)^{1 - \alpha} \right]$$



• 
$$P = \lambda \cdot \frac{T^{\alpha}}{\alpha - 1} \cdot \left[ (D + T)^{1 - \alpha} - (E + T)^{1 - \alpha} \right]$$

$$+\rho\cdot\sqrt{\lambda\cdot\frac{2T^{\alpha}}{(\alpha-1)(\alpha-2)}}\cdot\left[(D+T)^{2-\alpha}-(\alpha-1)\cdot(E+T)^{2-\alpha}+(\alpha-2)\cdot(D+T)\cdot(E+T)^{1-\alpha}\right]$$

- **D** = deductible
- E = exhaustion



• 
$$P = \lambda \cdot \frac{T^{\alpha}}{\alpha - 1} \cdot \left[ (D + T)^{1 - \alpha} - (E + T)^{1 - \alpha} \right]$$

$$+ \rho \cdot \sqrt{\lambda \cdot \frac{2T^{\alpha}}{(\alpha - 1)(\alpha - 2)}} \cdot \left[ (D + T)^{2 - \alpha} - (\alpha - 1) \cdot (E + T)^{2 - \alpha} + (\alpha - 2) \cdot (D + T) \cdot (E + T)^{1 - \alpha} \right]$$

- D = deductible
- E = exhaustion
- $\rho$  = risk aversion ~ 40%

• 
$$P = \lambda \cdot \frac{T^{\alpha}}{\alpha - 1} \cdot \left[ (D + T)^{1 - \alpha} - (E + T)^{1 - \alpha} \right]$$

$$+ \rho \cdot \sqrt{\lambda} \cdot \frac{2T^{\alpha}}{(\alpha - 1)(\alpha - 2)} \cdot \left[ (D + T)^{2 - \alpha} - (\alpha - 1) \cdot (E + T)^{2 - \alpha} + (\alpha - 2) \cdot (D + T) \cdot (E + T)^{1 - \alpha} \right]$$

- D = deductible
- E = exhaustion
- $\rho = \text{risk aversion} \sim 40\%$
- λ = Poisson intensity
   = probability of a claim



• 
$$P = \lambda \cdot \frac{T^{\alpha}}{\alpha - 1} \cdot \left[ (D + T)^{1 - \alpha} - (E + T)^{1 - \alpha} \right]$$

$$+\rho\cdot\sqrt{\lambda\cdot\frac{2T^{\alpha}}{(\alpha-1)(\alpha-2)}}\cdot\left[(D+T)^{2-\alpha}-(\alpha-1)\cdot(E+T)^{2-\alpha}+(\alpha-2)\cdot(D+T)\cdot(E+T)^{1-\alpha}\right]$$

- D = deductible
- E = exhaustion
- $\rho = \text{risk aversion} \sim 40\%$
- $\lambda$  = Poisson intensity = probability of a claim
- T = Pareto shape
- $\alpha$  = Pareto tail

• 
$$P = \lambda \cdot \frac{T^{\alpha}}{\alpha - 1} \cdot \left[ (D + T)^{1 - \alpha} - (E + T)^{1 - \alpha} \right]$$

 $+ \rho \cdot \sqrt{\lambda \cdot \frac{2T^{\alpha}}{(\alpha - 1)(\alpha - 2)}} \cdot \left[ (D + T)^{2 - \alpha} - (\alpha - 1) \cdot (E + T)^{2 - \alpha} + (\alpha - 2) \cdot (D + T) \cdot (E + T)^{1 - \alpha} \right]$ 

- D = deductibledepends on exposure, trigger and impact E = exhaustion
  - depends on exposure, trigger and impact
- $\rho = risk aversion \sim 40\%$
- reinsurance market standard?
- $\lambda =$  Poisson intensity = probability of a claim

must be calibrated to scenarios

- T = Pareto shape
- $\alpha = Pareto tail$

must be calibrated to scenarios must be calibrated to scenarios

#### Swissnuclear scenarios

| exposure         | trigger   | scenario description                                            | frequency |
|------------------|-----------|-----------------------------------------------------------------|-----------|
| nuclear facility | accident  | Transient, core damage, containment barrier intact              | 2.0E-08   |
| nuclear facility | accident  | Transient, core damage, containment damage                      | 3.0E-09   |
| nuclear facility | accident  | Airplane crash, large aircraft, core damage, containment damage | 8.0E-08   |
| nuclear facility | NatCat    | Strong earthquake with core damage, containment barrier intact  | 6.0E-06   |
| nuclear facility | NatCat    | Strong earthquake with core damage, containment damage          | 1.0E-06   |
| nuclear facility | NatCat    | Extreme winds and tornadoes, core damage, containment damage    | 1.0E-08   |
| nuclear facility | terrorism | External attack, Design Base Threat<br>(includes FLA)           | ?         |
| nuclear facility | war       | Kamikaze drone (Switchblade, Lanzet)                            | ?         |
|                  |           |                                                                 |           |

Experts for Experts

#### Calibration of the distributions to the scenarios

- N =frequency
  - Poisson distributed  $\mathbb{P}[N=n] = \frac{\lambda^n e^{-\lambda}}{n!}$
  - Parameter  $\lambda$  calibrated with moments:  $\lambda = \sum$  frequencies



#### Swissnuclear scenarios

|                  |           |                                                                 |           | impact           |                |              |
|------------------|-----------|-----------------------------------------------------------------|-----------|------------------|----------------|--------------|
| exposure         | trigger   | scenario description                                            | frequency | life/property/BI | environment    | prescription |
| nuclear facility | accident  | Transient, core damage, containment barrier intact              | 2.0E-08   | 250'000'000      | 50'000'000     | ?            |
| nuclear facility | accident  | Transient, core damage, containment damage                      | 3.0E-09   | 10'000'000'000   | 10'000'000'000 | ?            |
| nuclear facility | accident  | Airplane crash, large aircraft, core damage, containment damage | 8.0E-08   | 10'000'000'000   | 10'000'000'000 | ?            |
| nuclear facility | NatCat    | Strong earthquake with core damage, containment barrier intact  | 6.0E-06   | 250'000'000      | 250'000'000    | ?            |
| nuclear facility | NatCat    | Strong earthquake with core damage, containment damage          | 1.0E-06   | 10'000'000'000   | 10'000'000'000 | ?            |
| nuclear facility | NatCat    | Extreme winds and tornadoes, core damage, containment damage    | 1.0E-08   | 10'000'000'000   | 250'000'000    | ?            |
| nuclear facility | terrorism | External attack, Design Base Threat (includes FLA)              | ?         | 250'000'000      | 5'000'000      | ?            |
| nuclear facility | war       | Kamikaze drone (Switchblade, Lanzet)                            | ?         | 50'000'000       | 5'000'000      | ?            |
|                  |           |                                                                 |           |                  |                |              |

4 loss ranges:

#### Calibration of the distributions to the scenarios

- N =frequency
  - Poisson distributed  $\mathbb{P}[N=n] = \frac{\lambda^n e^{-\lambda}}{n!}$
  - Parameter  $\lambda$  calibrated with moments:  $\lambda = \sum$  frequencies

- X =severity
  - Pareto distributed  $\mathbb{P}[X \le x] = 1 \left(\frac{T}{T+x}\right)^{\alpha}$
  - Parameters *T* &  $\alpha$  calibrated with a  $\chi^2$  fit to their best fits



# Summary and outlook

- The Swiss Federation insures the Swiss nuclear industry in excess of the Swiss Nuclear Pool's covers
  - It used to price these covers with crude total loss tariffs
  - These eventually generated unplausible premiums
- The problem is similar to a facultative excess-of-loss reinsurance exercise and the Swiss Federation is now implementing an actuarial premium calculation
  - based on a collective Poisson-Pareto model
  - where the parameters are calibrated to scenarios provided by Swissnuclear
  - and the premium takes an analytic form
  - accounting for the expected loss and a risk margin
- The risk margin accounts here only for the process risk
- It would be interesting to also account for the contribution of the **parameter risk** to the risk margin!
  - See ASTIN Colloquium, Brussels 2024

# Fuzzy calibration of the distributions to the scenarios

- N =frequency
  - Poisson distributed  $\mathbb{P}[N=n] = \frac{\lambda^n e^{-\lambda}}{n!}$
  - Parameter  $\lambda$  calibrated with moments:  $\lambda = \sum$  frequencies

- X =severity
  - Pareto distributed  $\mathbb{P}[X \le x] = 1 \left(\frac{T}{T+x}\right)^{\alpha}$
  - Parameters *T* &  $\alpha$  calibrated with a  $\chi^2$  fit to their best fits to their best fit distributions
  - Sample these distributions numerically to obtain the fuzzy distribution of X
  - No longer analytic formula







Prime Re Solutions Raingässli 1 6300 Zug Switzerland







solutions@prs-zug.com



PRS Prime Re Solutions



www.prime-re-solutions.expert



#### Your team – Experts for Experts















Stéphane Gartenmann



Bor Harej









Experts for Experts

#### Track record & facts



# All our clients are akin: they seek BESPOKE solutions!

