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The European Directive 2009/138 changes the management style of insurance
undertakings, changes the logic of the evaluation process of the fundamental

measures and requires insurance undertakings to evaluate the values and risks In
"market consistent way".

Some measures gained prominence:

* Net Asset Value (NAV),

* Probabillity Distribution Forecast (PDF),
« Solvency Capital Requirement (SCR).
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The European Directive 2009/138 changes the management style of insurance
undertakings, changes the logic of the evaluation process of the fundamental measures
and requires insurance undertakings to evaluate the values and risks in "market
consistent way”.

Some measures gained prominence:

* Net Asset Value (NAV),

* Probabillity Distribution Forecast (PDF),
« Solvency Capital Requirement (SCR).

To evaluate these measures according to the Solvency Il principles could be Complex.
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Let (Q, F, (F, ), € [0,T], P)be a filtered probability space, and (Bo»t)te[o - be

t
the risk-free asset, such that By ; = eJo Tudtt,

The Net Asset Value of an insurance company attime t € [0, T |, denoted as
NAV,, Is defined as:

NAV, = V (t,A) — V (t,L).

where:

V (t,A) Is the market-consistent value of the assets 4 = {4;,t € [0,T |};
V (t, L) is the market-consistent value of the assets L = {L;,t € [0,T ]}.

The cash flows A and L depend on some risk drivers denoted as
X = {X, € Rio,t € [0,T]}
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The Solvency Capital Requirement (SCR) determines the amount of capital
ensuring that an undertaking will be able to meet its obligations over 1 year
with a probabllity of 99.5 %.

It can be mathematically formalized as:

SCRy 995 = (VaR 995 (NAV;) — E[NAV; [)v(0,1)
where v(0,1) is the price of a one-year ZCB, and VaR.(NAV;) is:

VaR.(NAV)) = inf{x € R:Fyay(x) = 1}
At the security level T € ]0,1].

The SCR calculation involves Fy 4, that is generally unknown.
L that is called the Probability Distribution Forecast (PDF) in the Directive (art. 13).
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IA~A SOLVENCY CAPITAL REQUIREMENT
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Figure: Solvency Capital Requirement Evaluation.

Source: Jonen, C., Meyhofer, T., & Nikolic, Z. (2023). Neural networks meet least squares Monte Carlo at internal model data. European Actuarial
Journal, 13(1), 399-425.
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ToYore. THE NESTED SIMULATION APPROACH
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Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (X,(f)) o ],i =1,..,np
te|0,1
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THE NESTED SIMULATION APPROACH

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (X,(f)) =1, ..

te[0,1]
2. Evaluating the NAV1 in each scenario as:
NAV®Y = v©(1,4) —vD(1,L) i=1,..np
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Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (Xff)) [ ],i =1,..,np
te|0,1

2. Evaluating the NAV1 in each scenario as:
NAV®Y = v©(1,4) —vD(1,L) i=1,..,np

lowever v (1, L) = IEQ[ZLz;—t | Xgi)] required to be computed numerically by
1,t
simulating, under the risk-neutral measure Q, sample paths (X,E])) [ ],j =1,..,ng
te|l,T

and evaluating:

¥ (J)

ng
V(l)(l L)— ZZ U) ,i=1,..,np
Jj= 1t=2
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Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (Xff)) [ ],i =1,..,np
te|0,1

2. Evaluating the NAV1 in each scenario as:
NAV®Y = v©(1,4) —vD(1,L) i=1,..,np

lowever v (1, L) = IEQ[ZLz;—t | Xgi)] required to be computed numerically by
1,t
simulating, under the risk-neutral measure Q, sample paths (X,E])) [ ],j =1,..,ng
te|l,T

and evaluating:

L( J)

5 (1) 2 2
V. 1,L) = 1=1,...,
( ) Tl@ B(l]) l "p

j=1t=
Nested Simulations! The computational cost IS proportional to np X ng
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COMPUTATIONAL COST: AN EXAMPLE

For example, if we consider:

1. np = 100000;

2. ng = 100;

The computational time of the procedure for the SCR calculation is:
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COMPUTATIONAL COST: AN EXAMPLE

For example, if we consider:

1. np = 100000;

2. ng = 100;

The computational time of the procedure for the SCR calculation is:

100000 X 100 X 1 sec = 115 days.
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If the conditional expectation function belongs to the L*-space, it can be expressed
as

VO = pX) = )y BEOPOX,)

here (B (), k = 1,..., 00} form an orthonormal basis of L2 and (BRI, k =
1,...,00} are some coefficients. An approximation can be obtained by considering a

finite set of K basis
K

AP (X)) = ) FRPII(x,)

k=0
and estimating the parameters by solving

_ 42
np 1 nQ r L( ]) o
ﬁ — drg mkin E n_ 2 2 (U) E B(k)lp(k)(xl)
BER® =1 | = t=2 k=0 |
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vy Nested Simulations Vs Least Squares Monte

v W\

Sao Paulo 2025 c a rl o
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Figure: Graphical representation of the Nested simulations and the Least Square Monte Carlo
approaches.
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v LEAST SQUARES MONTE CARLO AND THE
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CURSE OF DIMENSIONALITY

The number of terms Iin the polynomial regression grows with the number of the risk
drivers and the maximum degree of the polynomials m:

=

Table: Number of tems for polynomial given m and q,

m o
2 3 4 5 6 7 8
2 3 4 5 6 7 8
5 9 14 20 27 35 44

9 19 34 55 83 119 164
14 34 69 125 209 329 494
55 125 251 461 791 1286
27 83 209 461 923 1715 3002
35 119 329 791 1715 3431 6434
44 164 494 1286 3002 6434 12869
54 219 /714 2001 5004 11439 24309
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Let be x € R% the vector of features, a fully connected (FC) layer of size g; € N
IS a function

T
z:R% — R, x - z(x) = (zl(x),zz(x),...,qu(x))

Each component z;(x) is a non-linear function of x

do
X B Zj(.X') — ¢ (Wj,O ~+ sz,IXl> S ¢(Wj,0+ < Wj,x >), ] — 1,.--;CI1;
[=1

where ¢ : R - R Is the activation function, w; ; € R represent the network
parameters and <, > denotes the scalar product in R%,

.’ )
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In the case of d layers of size g = {qi}1<x<q € N%, the mapping reads:

x o z(@D e (7, D) (x) € RId
Where z(): Ri-1 — R . |In the case of univariate response, the output of the
network Is:

dd
X o () PG = g7 w4y w0 ),
[=1

g‘l IS an Inverse link function.

z(1) z(2)  Z(d-1) z(d)

FEEET
.
“*FyslsecTions

18



Since our aim consists of approximating a conditional expectation function we use
the MSE as loss function. The training of the network requires the optimisation:

i 12
L e T 1 @)

~ __ argmin T t FFN

g = et 0, e 2, 2, ~ V)
i=1| Q j=1t=2 "1t |

where I/ Is the vector of the neural network parameters.
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Since our aim consists of approximating a conditional expectation function we use
the MSE as loss function. The training of the network requires the optimisation:

_ 12
R P (9 )

~ __ argmin T t FFN

oo = weith . |mg 2, 2, pien ¥ K0
i=1| Q j=1t=2 "1t |

where I/ Is the vector of the neural network parameters.

L, L@ Ld-1) )

However, there Is lack of explainability!
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Let y,,, be a neural network with output dimension equal to the input dimension g,:
Yy R > R, x - P, (%),
having network weights W . The LocalGLMnet regression function is defined by

X s () 2 g7 (Bo + BOO)TX),
where g: R — R is the link function, 3, € R, and = Yy ().

fB;(x) =B, is not feature dependent.

fB;(x) =0,term B;(x)x; is dropped altogether.

fB;(x) = B; (x;), term B;(x)x; does not interact with any other terms x;1,j’ # ;.
nteractions can be studied by considering the gradient of 3;(x)

s N e

T
VB, (0) = (0,700, Oy B () € R
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il THE LSMC-LGN METHOD
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np [ "o T (i)
Lt

) 1 1 1
~ - argmin
(BO,TL@,WTLQ ) T WE]R{M :BOER Z o Z Z B(l,]) ‘uW’BO (Xl)

n
i=1 | ©j=it=2P1t

where
20 @ -1
¢ oo ﬂ(xl) * X1
* @ HW .3, (X1)
. O
3
d
Wj(,l)
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il THE LSMC-LGN METHOD
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The training of the localGLMnet induces the following optimisation:

e [ . M@ T ()
Lt

: 1 1 \
~ . argmin
(BO,TLQ,WTLQ ) — weRM BoER Z o Z Z B(l’]) luW,BO (Xl)

n
i=1 | Q= =2 Pt

where

,3(X1)*X1
¥ @ /—LW,,Bo(xl)
Wj(

d)
/

Some connections with the local-LSMC proposed by Hainaut & Akbaraly (2023)!
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We consider a simplified insurance portfolio consisting of one with-profit mixed
Insurance contract affected by 4 risk factors.
Three LSMC-style methods with approximation based on:

* Orthogonal polynomials (LSMC-OP);
 Deep learning (LSMC-DL);
 LocalGLMnet (LSMC-LGN).

We calibrate the methods using data obtained by setting:
* np = 10000;
« ng =2%,2%...,2%°.
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In~A THE ROLE OF ny IN THE LSMC METHODS

v W\ VWV
Sao Paulo 2025

210

ner simulations

In

24

—igure: Left: estimated NAYV distributions obtained with the different approaches (NS, LSMC-OP, LSMC-DL,
_SMC-LGN) for nq € {21, 2°,21°}.

Right: Normalised Root Mean Squared Error produced by the LSMC-style methods for ng = 21,1 =1,2,...,10.
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The estimated regression attention 1 < k < g,, allow us to quantity variable
Importance. A simple measure can be defined by:

1 .
) = EZ { ,Bn@(k) (X:ll)‘

. A large VI value suggests that the k-th component has a notable effect on
the response;

« A small VI® value suggests that the k-th component has a limited effect on

the response.
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Figure: Attention coefficients ,BAO,nQ(Xli), 1 <i < np, of the LSMC-LGN model.
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Figure: Attention coefficients ,BAO,nQ(X{)XLk, 1 <i < np, of the LSMC-LGN model.
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MEASURING THE INTERACTIONS
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We consider a more realistic insurance portfolio consisting of several
Insurance contracts affected by 23 risk factors.

Two simulated samples:

# outer # Inner Execution time
simulations  simulations (hh:mm:ss)
10000 1000 2:13:06
100000 10000 219:30:52

Table: Execution time of nested simulations with different values of np and ng. The values refer to a
parallel computing system, consisting of 152 cores.
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ElasticNet regularisation could be introduced in the LSMC-LGN to encourage
sparsity in the attention coefficients and perform feature selection.

In this case, the network training aims to minimize

np

Ng T

(B VT/) __argmin i 2 z
0, — BoW ng

= =2

i=1

(l J)

2
— Bo — z B(k)(x1)x1,k) + 1 ((1 — a)|IBy (x5 + 0(||Bw(x1)||1)

» with regularisation parameters n =0 and a € [0, 1]:
 a =0 — ridge regularisation;
« a=1— LASSO regularisation.
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lolelel REGULARISATION WITHIN THE LSMC-LGN MODEL

Sao Paulo 2025

Table: MSE values on the training and validation sets of the regularised LSMC-LGN for the different

values of n

1)

train MSE

validation MSE

0
1.00E-06
5.00E-06
1.00E-05

5.00E-05
1.00E-04
5.00E-04
1.00E-03
5.00E-03
1.00E-02
5.00E-02

0.0323
0.0318
0.0330
0.0331
0.0321
0.0332
0.0343
0.0333
0.0336
0.0340
0.0346

0.0328
0.0331
0.0325
0.0323
0.0322
0.0338
0.0337
0.0334
0.0338
0.0337
0.0340

Illil |
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REGULARISATION WITHIN THE LSMC-LGN MODEL
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Figure: Importance measures Vlfl',‘) (n) of the different risk factors for n = 0,1,
Q
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Yy THE ATTENTION COEFFICIENTS g, (X})

0.5
Eta

o.o-:&;--w-‘g ------ E - --*u-“——-'.' t :p!

-0.51

——r—r—r
I ms [ me [ wmo [ rx [ r2 [ R |00031015

0.0051015 0.0051015 00051015 00051015 00051015 00051015 0.0051015
Risk Factor Value

Figure: Attention coefficients §(X}),1 < i < np of the LSMC-LGN model related to the risk factors k =1, . . ., 23
In the cases of n = 0 and n = 1j,,, The red lines refer to the coefficients of the linear regression model.
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Model NRMSE REgscgr
LSMC 0.0341 1.4713
LSMC-DL 0.0173 0.8340

LSMC-LGN,,—o | 0.0171  0.8257
LSMC-LGN,_;_ | 0.0166 0.7204

Table: Out-of-Sample NRMSE and relative error in the SCR estimation produced by the different
LSMC-style methods.
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Assessing the SCR via nested simulations can pose computational challenges.

Neural Networks are effective in alleviating the computational cost of SCR
calculations, but they operate as black boxes.

localGLMnet allows for model explainability and yields accurate results.

Regularisation can improve performance and enhance the robustness of the
method.
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Questions?

Mail: salvatore.scognamiglio@uniparthenope.it

Linkedin:
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