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SOLVENCY II

The European Directive 2009/138 changes the management style of insurance 

undertakings, changes the logic of the evaluation process of the fundamental 

measures and requires insurance undertakings to evaluate the values and risks in 

”market consistent way”.

Some measures gained prominence: 

• Net Asset Value (NAV), 

• Probability Distribution Forecast (PDF), 

• Solvency Capital Requirement (SCR).
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SOLVENCY II

The European Directive 2009/138 changes the management style of insurance 

undertakings, changes the logic of the evaluation process of the fundamental measures 

and requires insurance undertakings to evaluate the values and risks in ”market 

consistent way”.

Some measures gained prominence: 

• Net Asset Value (NAV), 

• Probability Distribution Forecast (PDF), 

• Solvency Capital Requirement (SCR).

To evaluate these measures according to the Solvency II principles could be Complex.
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Let (Ω, 𝐹, 𝐹𝑡 𝑡 ∈ [0, 𝑇], ℙ)be a filtered probability space, and 𝐵0,𝑡 𝑡∈[0,𝑇]
be 

the risk-free asset, such that 𝐵0,𝑡 = 𝑒0
𝑡
𝑟𝑢𝑑𝑢.

The Net Asset Value of an insurance company at time t ∈ [0, T ], denoted as 

𝑁𝐴𝑉𝑡, is defined as:

𝑁𝐴𝑉𝑡 = 𝑉 (𝑡, 𝑨) − 𝑉 (𝑡, 𝑳).

where:

𝑉 (𝑡, 𝑨) is the market-consistent value of the assets 𝑨 = {𝐴𝑡, 𝑡 ∈ [0, 𝑇 ]};
𝑉 𝑡, 𝑳 is the market-consistent value of the assets  𝑳 = {𝐿𝑡 , 𝑡 ∈ [0, 𝑇 ]}.

The cash flows A and L depend on some risk drivers denoted as

𝑿 = {𝑿𝒕 ∈ ℝ𝑞0 , 𝑡 ∈ [0, 𝑇 ]}.
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SOLVENCY CAPITAL REQUIREMENT

The Solvency Capital Requirement (SCR) determines the amount of capital

ensuring that an undertaking will be able to meet its obligations over 1 year

with a probability of 99.5 %.

It can be mathematically formalized as: 

𝑆𝐶𝑅0.995 = 𝑉𝑎𝑅0.995 𝑁𝐴𝑉1 − 𝔼 𝑁𝐴𝑉1 𝑣 0,1
where 𝑣 0,1 is the price of a one-year ZCB, and 𝑉𝑎𝑅τ 𝑁𝐴𝑉1 is:

𝑉𝑎𝑅τ 𝑁𝐴𝑉1 = inf{ 𝑥 ∈ ℝ : 𝐹𝑁𝐴𝑉 𝑥 ≥ τ}
At the security level τ ∈ ]0,1[.

The SCR calculation involves 𝑭𝑵𝑨𝑽
1 that is generally unknown.

1 that is called the Probability Distribution Forecast (PDF) in the Directive (art. 13).
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SOLVENCY CAPITAL REQUIREMENT 

EVALUTATION 

Figure: Solvency Capital Requirement Evaluation.
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Source: Jonen, C., Meyhofer, T., & Nikolic, Z. (2023). Neural networks meet least squares Monte Carlo at internal model data. European Actuarial

Journal, 13(1), 399-425.



THE NESTED SIMULATION APPROACH

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ
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THE NESTED SIMULATION APPROACH

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ

2. Evaluating the NAV1 in each scenario as: 

𝑁𝐴𝑉1
(𝑖)

= 𝑉(𝑖) 1, 𝑨 − 𝑉 𝑖 1, 𝑳 𝑖 = 1,… , 𝑛ℙ
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THE NESTED SIMULATION APPROACH

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ

2. Evaluating the NAV1 in each scenario as: 

𝑁𝐴𝑉1
(𝑖)

= 𝑉(𝑖) 1, 𝑨 − 𝑉 𝑖 1, 𝑳 𝑖 = 1,… , 𝑛ℙ

However 𝑣 𝑖 1, 𝑳 = 𝔼ℚ[σ𝑡=2
𝑇 𝐿𝑡

𝐵1,𝑡
| 𝑿1

(𝑖)
] required to be computed numerically by 

simulating, under the risk-neutral measure ℚ, sample paths 𝑿𝑡
𝑗

𝑡∈ 1,𝑇
, 𝑗 = 1, … , 𝑛ℚ

and evaluating:

𝑉𝑛ℚ
𝑖
1, 𝑳 =

1

𝑛ℚ


𝑗=1

𝑛ℚ



𝑡=2

𝑇
𝐿𝑡
(𝑖,𝑗)

𝐵1,𝑡
(𝑖,𝑗)

, 𝑖 = 1, … , 𝑛ℙ
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and evaluating:

𝑉𝑛ℚ
𝑖
1, 𝑳 =

1

𝑛ℚ


𝑗=1
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𝑡=2

𝑇
𝐿𝑡
(𝑖,𝑗)

𝐵1,𝑡
(𝑖,𝑗)

, 𝑖 = 1, … , 𝑛ℙ

Nested Simulations! The computational cost is proportional to 𝑛ℙ × 𝑛ℚ
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COMPUTATIONAL COST: AN EXAMPLE

For example, if we consider:

1. 𝑛ℙ = 100000;
2. 𝑛ℚ = 100;

The computational time of the procedure for the SCR calculation is:
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COMPUTATIONAL COST: AN EXAMPLE

For example, if we consider:

1. 𝑛ℙ = 100000;
2. 𝑛ℚ = 100;

The computational time of the procedure for the SCR calculation is:

100000 × 100 × 1 sec ≈ 115 𝑑𝑎𝑦𝑠.
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LEAST SQUARE MONTE CARLO (LONGSTAFF 

AND SCHWARTZ, 2001)
If the conditional expectation function belongs to the 𝐿2-space, it can be expressed 

as

𝑉 𝑖 1, 𝑳 = 𝜇 𝑿1 = 

𝑘=0

∞

β 𝑘 𝜓 𝑘 (𝑿1)

here {𝜓(𝑘)(·), 𝑘 = 1, . . . , ∞} form an orthonormal basis of 𝐿2 and {β(𝑘)(·), 𝑘 =
1, . . . , ∞} are some coefficients. An approximation can be obtained by considering a 

finite set of K basis

Ƹ𝜇 𝑂𝑃 𝑿1 = 

𝑘=0

𝐾

β 𝑘 𝜓 𝑘 (𝑿1)

and estimating the parameters by solving

𝜷 = arg min
β∈ ℝ𝑘



𝑖=1

𝑛ℙ
1

𝑛ℚ


𝑗=1

𝑛ℚ



𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− 

𝑘=0

∞

β 𝑘 𝜓 𝑘 𝑿1

2

14



Nested Simulations Vs Least Squares Monte 

Carlo

Figure: Graphical representation of the Nested simulations and the Least Square Monte Carlo 

approaches.
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LEAST SQUARES MONTE CARLO AND THE 

CURSE OF DIMENSIONALITY

The number of terms in the polynomial regression grows with the number of the risk 

drivers and the maximum degree of the polynomials m:
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Table: Number of tems for polynomial given 𝑚 and 𝑞0



NEURAL NETWORKS

Let be  𝒙 ∈ ℝ𝑞0 the vector of features, a fully connected (FC) layer of size 𝑞1 ∈ ℕ
is a function

𝒛:ℝ𝑞0 → ℝ𝑞1 , 𝒙 ↦ 𝒛 𝒙 = 𝑧1 𝒙 , 𝑧2 𝒙 , . . . , 𝑧𝑞1 𝒙
𝑇

Each component 𝑧𝑗 𝑥 is a non-linear function of 𝒙

𝒙 ↦ 𝒛𝒋 𝒙 = 𝜙 𝑤𝑗,0 +

𝑙=1

𝑞0

𝑤𝑗,𝐼𝑥𝑙 = 𝜙 𝑤𝑗,0+ < 𝒘𝑗 , 𝒙 > , 𝑗 = 1, . . . , 𝑞1,

where 𝜙 ∶ ℝ → ℝ is the activation function, 𝑤𝑗,𝑙 ∈ ℝ represent the network 

parameters and < ,> denotes the scalar product in ℝq0.
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DEEP NEURAL NETWORKS

In the case of d layers of size 𝑞 = 𝑞𝑘 1≤𝑘≤𝑑 ∈ ℕ𝑑 , the mapping reads:

𝑥 ↦ 𝑧(𝑑:1) ≝ 𝑧 𝑑
°… ° 𝑧

1 𝑥 ∈ ℝ𝑞𝑑

Where 𝑧(𝑘): ℝ𝑞𝑘−1 → ℝ𝑞𝑘 . In the case of univariate response, the output of the

network is:

𝑥 ↦ 𝜇𝑤 𝑥 ≝ 𝜓𝑊
𝐹𝐹𝑁 𝑥 ≝ 𝑔−1 𝑤0

𝑑+1
+ 

𝑙=1

𝑞𝑑

𝑤𝑙
𝑑+1

𝑧𝑙
𝑑:1

𝑥 ,

𝑔−1 is an inverse link function.
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THE LSMC-DL METHOD
Since our aim consists of approximating a conditional expectation function we use 

the MSE as loss function. The training of the network requires the optimisation:

𝑊𝑛ℚ = 𝑊∈ℝ𝑀
𝑎𝑟𝑔𝑚𝑖𝑛



𝑖=1

𝑛ℙ
1

𝑛ℚ


𝑗=1

𝑛ℚ



𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− 𝜓𝑊
𝐹𝐹𝑁 𝑿𝟏

2

where 𝑊 is the vector of the neural network parameters.
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where 𝑊 is the vector of the neural network parameters.
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However, there is lack of explainability!



THE LOCALGLMNET MODEL OF RICHMAN AND 

WUTHRICH (2023)

Let 𝜓𝑊 be a neural network with output dimension equal to the input dimension 𝑞0:
𝜓𝑊 ∶ ℝ𝑞0 → ℝ𝑞0 , 𝑥 ↦ 𝜓𝑊 𝑥 ,

having network weights W . The LocalGLMnet regression function is defined by

𝑥 ↦ 𝜇𝑊,β0
𝑥 ≝ 𝑔−1 β0 + β 𝑥 𝑇𝑋 ,

where 𝑔 ∶ ℝ → ℝ is the link function, β0 ∈ ℝ, and β 𝑥 = 𝜓𝑊 𝑥 .

1. If β𝑗 𝑥 ≡ β𝑗 is not feature dependent.

2. If β𝑗 𝑥 ≡ 0, term β𝑗 𝑥 𝑥𝑗 is dropped altogether.

3. If β𝑗 𝑥 = β𝑗 𝑥𝑗 , term β𝑗 𝑥 𝑥𝑗 does not interact with any other terms 𝑥𝑗′ , 𝑗
′ ≠ 𝑗.

4. Interactions can be studied by considering the gradient of β𝑗 𝑥

∇β𝑗 𝑥 = 𝜕x1β𝑗 𝑥 , . . . , 𝜕xq0β𝑗 𝑥
𝑇

∈ ℝ𝑞0
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THE LSMC-LGN METHOD

The training of the localGLMnet induces the following optimisation:

(β0,𝑛ℚ,
𝑊𝑛ℚ ) = 𝑊∈ℝ𝑀 ,β0∈ℝ

𝑎𝑟𝑔𝑚𝑖𝑛


𝑖=1

𝑛ℙ
1

𝑛ℚ


𝑗=1

𝑛ℚ



𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− 𝜇𝑊,β0
𝑿𝟏

2

where
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THE LSMC-LGN METHOD

The training of the localGLMnet induces the following optimisation:

(β0,𝑛ℚ,
𝑊𝑛ℚ ) = 𝑤∈ℝ𝑀 ,β0∈ℝ
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𝑛ℙ
1

𝑛ℚ


𝑗=1
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where
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Some connections with the local-LSMC proposed by Hainaut & Akbaraly (2023)!



NUMERICAL EXPERIMENTS’ SETTING

We consider a simplified insurance portfolio consisting of one with-profit mixed 

insurance contract affected by 4 risk factors.

Three LSMC-style methods with approximation based on:

• Orthogonal polynomials (LSMC-OP); 

• Deep learning (LSMC-DL); 

• LocalGLMnet (LSMC-LGN).

We calibrate the methods using data obtained by setting:

• 𝑛ℙ = 10000;
• 𝑛ℚ = 21, 22, . . . , 210.

The benchmark is the Nested Simulation approach with 𝑛ℙ = 10000.
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THE ROLE OF 𝒏ℚ IN THE LSMC METHODS

Figure: Left: estimated NAV distributions obtained with the different approaches (NS, LSMC-OP, LSMC-DL, 

LSMC-LGN) for 𝑛ℚ ∈ {21, 25, 210}. 

Right: Normalised Root Mean Squared Error produced by the LSMC-style methods for 𝑛ℚ = 2𝐼 , 𝐼 = 1,2, … , 10.

25



IMPORTANCE VARIABLE

The estimated regression attention 1 ≤ 𝑘 ≤ 𝑞0, allow us to quantity variable 

importance. A simple measure can be defined by:

𝑉𝐼(𝑘) =
1

𝑛


𝑖

𝛽𝑛ℚ

(𝑘)
𝑿1
𝑖

• A large 𝑉𝐼(𝑘) value suggests that the k-th component has a notable effect on 

the response; 

• A small 𝑉𝐼(𝑘) value suggests that the k-th component has a limited effect on 

the response.



THE CONTRIBUTION VALUE 𝜷𝟎,𝒏ℚ 𝑿𝟏
𝒊

27

Figure: Attention coefficients መ𝛽0,𝑛ℚ 𝑋1
𝑖 , 1 ≤ 𝑖 ≤ 𝑛ℙ, of the LSMC-LGN model. 



THE CONTRIBUTION VALUE 𝜷𝟎,𝒏ℚ 𝑿𝟏
𝒊 𝑿𝟏,𝒌

(𝒊)
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Figure: Attention coefficients መ𝛽0,𝑛ℚ 𝑋1
𝑖 𝑋1,𝑘 , 1 ≤ 𝑖 ≤ 𝑛ℙ, of the LSMC-LGN model. 



MEASURING THE INTERACTIONS

Figure: Spline fits to the sensitivities ∂𝑥1,𝑢
መ𝛽0,𝑛ℚ 𝑋1

𝑖 , 1 ≤ 𝑢, 𝑘 ≤ 4 over the scenarios , 𝑖 =

1, … , 𝑛ℙ
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NUMERICAL EXPERIMENTS’ SETTING

We consider a more realistic insurance portfolio consisting of several 

insurance contracts affected by 23 risk factors. 

Two simulated samples:

30

Table: Execution time of nested simulations with different values of 𝑛ℙ and 𝑛ℚ. The values refer to a 

parallel computing system, consisting of 152 cores. 



REGULARISATION WITHIN THE LSMC-LGN MODEL 

ElasticNet regularisation could be introduced in the LSMC-LGN to encourage                                  

sparsity in the attention coefficients and perform feature selection. 

In this case, the network training aims to minimize

(β0, 𝑊) = β0,𝑊
𝑎𝑟𝑔𝑚𝑖𝑛



𝑖=1

𝑛ℙ
1

𝑛ℚ


𝑗=1

𝑛ℚ



𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− β0 − 

𝑘=1

𝑞0

β𝑊
𝑘

𝑥1 𝑥1,𝑘

2

+ ƞ 1 − α β𝑊 𝒙1 2
2 + α β𝑊 𝒙1 1

• with regularisation parameters η ≥ 0 and α ∈ [0, 1]: 

• α = 0 → ridge regularisation; 

• α = 1 → LASSO regularisation.
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REGULARISATION WITHIN THE LSMC-LGN MODEL

Table: MSE values on the training and validation sets of the regularised LSMC-LGN for the different 

values of η
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REGULARISATION WITHIN THE LSMC-LGN MODEL

Figure: Importance measures 𝑉𝐼
𝑛ℚ
′
𝑘
(ƞ) of the different risk factors for ƞ = 0, ොƞ𝑜𝑝𝑡
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THE ATTENTION COEFFICIENTS 𝜷𝒏ℚ 𝑿𝟏
𝒊

Figure: Attention coefficients መ𝛽 𝑋1
𝑖 , 1 ≤ 𝑖 ≤ 𝑛ℙ of the LSMC-LGN model related to the risk factors k = 1, . . . , 23 

in the cases of ƞ = 0 𝑎𝑛𝑑 ƞ = ොƞ𝑜𝑝𝑡 The red lines refer to the coefficients of the linear regression model.
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RESULTS

Table: Out-of-Sample NRMSE and relative error in the SCR estimation produced by the different 

LSMC-style methods.
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CONCLUSIONS

• Assessing the SCR via nested simulations can pose computational challenges.

• Neural Networks are effective in alleviating the computational cost of SCR 

calculations, but they operate as black boxes. 

• localGLMnet allows for model explainability and yields accurate results.

• Regularisation can improve performance and enhance the robustness of the 

method.
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Thank you! Obrigado!

Questions?

Mail: salvatore.scognamiglio@uniparthenope.it

Linkedin:
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