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Solvency I

The European Directive 2009/138 changes the management style of insurance
undertakings, changes the logic of the evaluation process of the fundamental

measures and requires insurance undertakings to evaluate the values and risks in
“market consistent way”.

Some measures gained prominence:

= Net Asset Value (NAV),

= Probability Distribution Forecast (PDF),
= Solvency Capital Requirement (SCR).
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Solvency I

The European Directive 2009/138 changes the management style of insurance
undertakings, changes the logic of the evaluation process of the fundamental
measures and requires insurance undertakings to evaluate the values and risks in
“market consistent way”.

Some measures gained prominence:

= Net Asset Value (NAV),

= Probability Distribution Forecast (PDF),
= Solvency Capital Requirement (SCR).

To evaluate these measures according to the Solvency Il principles could be
Complex.
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Let (Q, F, (F; ); € [0, T],P)be a filtered probability space, and (B, t) be the
f rydu f

risk-free asset, such that By ; = e’o

The Net Asset Value of an insurance company at timet € [0, T ], denoted as NAV;,
is defined as:

NAV, = V (t,4) — V (t,L).

where:

= 1 (t,A) is the market-consistent value of the assets 4
= VV (t,L) is the market-consistent value of the assets L

{A;,t € [0, T}
{L;,t € [0, T]}.

The cash flows A and L depend on some risk drivers denoted as
= {X; € R%,t € [0,T]}.
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Solvency Capital Requirement

The Solvency Capital Requirement (SCR) determines the amount of capital
ensuring that an undertaking will be able to meet its obligations over 1 year
with a probability of 99.5 %.

It can be mathematically formalized as:

SCRy.995 = (VaR(g95(NAV;) — E[NAV;)v(0,1)
where v(0,1) is the price of a one-year ZCB, and VaR . (NAV;) is:

VaRT(NAV:l) = inf{x (S R:FNA[/(X) = T}
At the security level T € ]0,1].

The SCR calculation involves F} 4, that is generally unknown.

1 that is called the Probability Distribution Forecast (PDF) in the Directive (art. 13).
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Solvency Capital Requirement Evalutation
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Figure: Solvency Capital Requirement Evaluation.

Source: Jonen, C., Meyhofer, T., & Nikolic, Z. (2023). Neural networks meet least squares Monte Carlo at internal model data. European Actuarial Journal,
13(1), 399-425.
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The Nested Simulation Approach

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (Xgi)) [ ],i =1,..,np
te|0,1
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The Nested Simulation Approach

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (Xgi)) [ ],i =1,..,np
te|0,1
2. Evaluating the NAV1 in each scenario as:
NAV® = v (1,4) — v (1, L) i=1,..1np
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The Nested Simulation Approach

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (Xgi)) [ ],i =1,..,np
te|0,1

2. Evaluating the NAV in each scenario as:

NAV® = <l>(1 A) —v®(1, L) i=1,.
However v()(1,L) = IE@[Z |X(‘)] required to be computed numerically by 5|mulat|ng, under
1
the risk-neutral measure @, sample paths (X(’)) . ,j = 1,...,ng and evaluating:
te|l,
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The Nested Simulation Approach

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure P, sample paths (XE")) [ ],i =1,..,np
te|0,1
2. Evaluating the NAV in each scenario as:
NAV® = V<i>(1 A) —v®(1, L) i=1,.
However v (1,L) = EQYT_, |X(‘)] required to be computed numerically by 5|mulat|ng, under
1
the risk-neutral measure @, sample paths (X(’)) . ,j = 1,...,ng and evaluating:
te|l,
g T (lJ)
, L — , ey I
Tl@ B(l J)

j=1t=

Nested Simulations! The computational cost is proportional to np X ng
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Computational cost: an example

For example, if we consider:

1. np =100000;

2. ng =100;

3. The computational time of the procedure for the SCR calculation is:
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Computational cost: an example

For example, if we consider:

1. np =100000;

2. ng =100;

3. The computational time of the procedure for the SCR calculation is:

100000 x 100 X 1 sec = 115 days.
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Least Square Monte Carlo (Longstaff and Schwartz, 2001)

If the conditional expectation function belongs to the L?-space, it can be expressed as
© eca

V(i)(l,L) = u(X,) = z B(k)w(k)(xl) ~

k=0

2024

here { ¥ (), k = 1,..., 0} form an orthonormal basis of L? and {5 (), k =
1,...,00} are some coefficients. An approximation can be obtained by considering a
finite set of K basis

AP (x) = ) Py (x))
1 kzzo 1

and estimating the parameters by solving

e [ e T L0 %
SN [ o e
BER® =1 [ @j=1t=zB1t
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Nested Simulations Vs Least Squares Monte Carlo

real-world simulations risk-neutral simulations real-world simulations

P Q P

t t+1 T t t+1 T

Figure: Graphical representation of the Nested simulations and the Least Square Monte Carlo
approaches.
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Least Squares Monte Carlo and the curse of dimensionality

The number of terms in the polynomial regression grows with the number of the
risk drivers and the maximum degree of the polynomials m:

o

Table: Number of terms for polynomial given m and g,

m o
2 3 4 5 6 7 8
2 3 4 5 6 7 8
5 9 14 20 27 35 44
9 19 34 55 83 119 164

14 34 69 125 209 329 494
20 55 125 251 461 791 1286
27 83 209 461 923 1715 3002
35 119 329 791 1715 3431 6434
44 164 494 1286 3002 6434 12869
54 219 714 2001 5004 11439 24309
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Neural Networks

Let be x € R90 the vector of features, a fully connected (FC) layer of size g; € N

is a function

T
z€R% - R%, x o 2(x) = (z.(2), (%), .., 24, (%))
Each component z;(x) is a non-linear function of x

do
I=1

where ¢ : R — Ris the activation function, w; ; € R represent the network parameters and <, > denotes the scalar

z

product in R9o, N

Wj, I

ECA 2024 www.eca2024.org
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Deep Neural Networks
In the case of d layers of size ¢ = {q) }1<x<qg € N¢, the mapping reads:

x o z(@D & (D), 2D (x) € RId
Where z(F): R2k-1 — R _ In the case of univariate response, the output of the network is:

dd
x = () 2 PG = g (wéd“) + wad+”z§d=“<x>>,
=1

g_1 is an inverse link function.
z(1) 2(2)  Z(d-1) 2(d)

(d)
Wi
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The LSMC-DL method

Since our aim consists of approximating a conditional expectation function we use
the MSE as loss function. The training of the network requires the optimisation:

ne [ 0g T G) 1%

T
- 1
7y _ argmin T t _  ,FFN
Wng = werm z n 2 @y ¥ (K1)
1

i=1| ¢t

where IV is the vector of the neural network parameters.
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The LSMC-DL method

Since our aim consists of approximating a conditional expectation function we use
the MSE as loss function. The training of the network requires the optimisation:

42
21 & &)
7 __argmin FEN
Wn@ — weRM z (l]) l/) (Xl)
i=1]| ] =1t= 2

where W is the vector of the neural network parameters.

W (2)
Wi Wi |

However, there 1s lack of explainability!
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The localGLMnet model of Richman and Wuthrich (2023)

Let ¢y, be a neural network with output dimension equal to the input dimension qg:
Yy ¢ R0 - R, x = Py, (x),
having network weights W . The LocalGLMnet regression function is defined by

X = iy (0) 2 g1 (Bo + BOTX),
where g : R — R is the link function, By € R, and B(x) = Yy (x).

If 3j(x) = [3; is not feature dependent.

If B;(x) =0, term B;(x)x; is dropped altogether.

If B;(x) =By (xj), term B;(x)x; does not interact with any other terms x;1, j" # j.
Interactions can be studied by considering the gradient of [3; (x)

BN e

T
VB, () = (9, B,(0), -, B By () € R0
»



The LSMC-LGN method

The training of the localGLMnet induces the following optimisation:

np nQ

T
: 1
~ . argmin L t
(BO,TLQ,W’)’LQ ) — WERM IBOER z n z z B(l’]) l’lW,BO (Xl)

i=1| @ j=1t=2Put

where

X1 ,B(Xl)*xl
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The LSMC-LGN method

The training of the localGLMnet induces the following optimisation:

np _1 e T L(u) I’
5 S . argmin =
(Bong W) = e e D |- ZZB(U) fy g, (X1)
i=1| © =it=2 Put _
where
Z(2)  S(d-1)
Xl)*xl

Some connections with the local-LSMC proposed by Hainaut & Akbaraly (2023)!
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Numerical Experiments’ Setting

2024
We consider a simplified insurance portfolio consisting of one with-profit mixed
insurance contract affected by 4 risk factors.

Three LSMC-style methods with approximation based on:

= Orthogonal polynomials (LSMC-OP);
= Deep learning (LSMC-DL);
= LocalGLMnet (LSMC-LGN).

We calibrate the methods using data obtained by setting:
= np = 10000;
" Ng = 21 22 ..., 210

The benchmark is the Nested Simulation approach with np = 10000.
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The role of ng in the LSMC methods
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Figure: Left: estimated NAV distributions obtained with the different approaches (NS, LSMC-OP, LSMC-DL, LSMC-LGN)

for ng € {21,25,21°}.

Right: Normalised Root Mean Squared Error produced by the LSMC-style methods for ng = 21,1 =1,2,...,10.
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Importance Variable

The estimated regression attention 1 < k < g, allow us to quantity variable
importance. A simple measure can be defined by:

1 |
Vit = EZ | B (X))

= Alarge VI®) value suggests that the k-th component has a notable effect on

the response;
= Asmall VI®) value suggests that the k-th component has a limited effect on

the response.
o - ] I —

Importance Measure
=

L]
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The Attention Coefficients Bo,n(@ (X
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Figure: Attention coefficients ,BA’O,nQ (Xli), 1 <i < np, of the LSMC-LGN model.

ECA 2024 www.eca2024.org



The Contribution Value B¢, (X‘l)Xglgc
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Figure: Attention coefficients ,BA’O,nQ (Xli)Xl,k, 1 <i < np, of the LSMC-LGN model.
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Measuring the Interactions
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Figure: Spline fits to the sensitivities 0, 1,uBO,nQ (Xli), 1 <u,k < 4overthe scenarios,i =1, ...,np
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Numerical Experiments’ Setting

We consider a more realistic insurance portfolio consisting of several insurance
contracts affected by 23 risk factors.

Two simulated samples:

# outer # Inner Execution time
simulations  simulations (hh:mm:ss)
10000 1000 2:13:06
100000 10000 219:30:52

Table: Execution time of nested simulations with different values of np and ng. The values refer to a parallel
computing system, consisting of 152 cores.
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Regularisation within the LSMC-LGN model

ElasticNet regularisation could be introduced in the LSMC-LGN to encourage
sparsity in the attention coefficients and perform feature selection.

In this case, the network training aims to minimize

2

5 argmin N L( " <

(Bo W) = " <nQ 223@,) - Bo - ;Z Bé’v‘)(xaxl,k) + 1 ((1 = llBy Gl + allBy el )
=1

=1 j=1t=2

with regularisation parametersn>0and a € [0, 1]:
= oa=0 - ridge regularisation;
= a=1-> LASSO regularisation.
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Regularisation within the LSMC-LGN model

] train MSE | validation MSE

0 0.0323 0.0328
1.00E-06 0.0318 0.0331
5.00E-06 0.0330 0.0325
1.00E-05 0.0331 0.0323
5.00E-05 | 0.0321 0.0322
1.00E-04 0.0332 0.0338
5.00E-04 0.0343 0.0337
1.00E-03 0.0333 0.0334
5.00E-03 0.0336 0.0338
1.00E-02 0.0340 0.0337
5.00E-02 0.0346 0.0340

Table: MSE values on the training and validation sets of the regularised LSMC-LGN for the different values of 7.
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Regularisation within the LSMC-LGN model
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The Attention Coefficients ﬁnQ (X ‘1)
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Figure: Attention coefficients 3 (Xli), 1 < i < np of the LSMC-LGN model related to the risk factors k=1, ..., 23 in the
cases of = 0 and 1 = 1,y The red lines refer to the coefficients of the linear regression model.
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Results

Model NRMSE HESEE’
LSMC 0.0341 1.4713
LSMC-DL 0.0173 0.8340

LSMC-LGN,,—o | 0.0171  0.8257
LSMC-LGN,_; . | 0.0166 0.7204

Table: Out-of-Sample NRMSE and relative error in the SCR estimation produced by the different LSMC-style methods.
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Conclusions

2024

eca
= Assessing the SCR via nested simulations can pose computational challenges. 4

= Neural Networks are effective in alleviating the computational cost of SCR
calculations, but they operate as black boxes.

" |ocalGLMnet allows for model explainability and yields accurate results.

= Regularisation can improve performance and enhance the robustness of the
method.
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Conclusions

= Assessing the SCR via nested simulations can pose computational challenges.

= Neural Networks are effective in alleviating the computational cost of SCR
calculations, but they operate as black boxes.

" |ocalGLMnet allows for model explainability and yields accurate results.

= Regularisation can improve performance and enhance the robustness of the
method.
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ATTENTION !

ECA 2024 www.eca2024.org 37



ot

« "« european

@ OOG @ Y actuarial
actuarial association of europe :

ISOA academy

. Thank you

Mail: salvatore.scognamiglio@uniparthenope.it

Linkedin:

= r — X}
e - B0 B




	Folie 1: Explainable Least Square Monte Carlo for Solvency Capital Requirement Evaluation
	Folie 2: About the speaker
	Folie 3: Solvency II
	Folie 4: Solvency II
	Folie 5
	Folie 6: Solvency Capital Requirement
	Folie 7: Solvency Capital Requirement Evalutation 
	Folie 8: The Nested Simulation Approach
	Folie 9: The Nested Simulation Approach
	Folie 10: The Nested Simulation Approach
	Folie 11: The Nested Simulation Approach
	Folie 12: Computational cost: an example
	Folie 13: Computational cost: an example
	Folie 14: Least Square Monte Carlo (Longstaff and Schwartz, 2001)
	Folie 15: Nested Simulations Vs Least Squares Monte Carlo
	Folie 16: Least Squares Monte Carlo and the curse of dimensionality
	Folie 17: Neural Networks
	Folie 18: Deep Neural Networks
	Folie 19: The LSMC-DL method
	Folie 20: The LSMC-DL method
	Folie 21: The localGLMnet model of Richman and Wuthrich (2023)
	Folie 22: The LSMC-LGN method
	Folie 23: The LSMC-LGN method
	Folie 24: Numerical Experiments’ Setting
	Folie 25: The role of fett kursiv n tiefgestellt Doppelstrich groß Q  in the LSMC methods
	Folie 26: Importance Variable
	Folie 27: The Attention Coefficients fett kursiv Beta Dach tiefgestellt , fett 0 ,fett kursiv n tiefgestellt Doppelstrich groß Q , Ende tiefgestellt , Klammer auf fett kursiv groß X tiefgestellt fett 1 hoch fett kursiv i. , , Klammer zu 
	Folie 28: The Contribution Value fett kursiv Beta Dach tiefgestellt , fett 0 ,fett kursiv n tiefgestellt Doppelstrich groß Q , Ende tiefgestellt , Klammer auf fett kursiv groß X tiefgestellt fett 1 hoch fett kursiv i. , , Klammer zu , fett kursiv groß X t
	Folie 29: Measuring the Interactions
	Folie 30: Numerical Experiments’ Setting
	Folie 31: Regularisation within the LSMC-LGN model
	Folie 32: Regularisation within the LSMC-LGN model
	Folie 33: Regularisation within the LSMC-LGN model
	Folie 34: The Attention Coefficients fett kursiv Beta Dach tiefgestellt , fett kursiv n tiefgestellt Doppelstrich groß Q , Ende tiefgestellt , Klammer auf fett kursiv groß X tiefgestellt fett 1 hoch fett kursiv i. , , Klammer zu 
	Folie 35: Results 
	Folie 36: Conclusions
	Folie 37: Conclusions
	Folie 38

