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Solvency II

3

The European Directive 2009/138 changes the management style of insurance 

undertakings, changes the logic of the evaluation process of the fundamental 

measures and requires insurance undertakings to evaluate the values and risks in 

”market consistent way”.

Some measures gained prominence: 

▪ Net Asset Value (NAV), 

▪ Probability Distribution Forecast (PDF), 

▪ Solvency Capital Requirement (SCR).

ECA 2024
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Solvency II

4

The European Directive 2009/138 changes the management style of insurance 

undertakings, changes the logic of the evaluation process of the fundamental 

measures and requires insurance undertakings to evaluate the values and risks in 

”market consistent way”.

Some measures gained prominence: 

▪ Net Asset Value (NAV), 

▪ Probability Distribution Forecast (PDF), 

▪ Solvency Capital Requirement (SCR).

To evaluate these measures according to the Solvency II principles could be

Complex.

ECA 2024
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Let (Ω, 𝐹, 𝐹𝑡 𝑡 ∈ [0, 𝑇], ℙ)be a filtered probability space, and 𝐵0,𝑡 𝑡∈[0,𝑇]
 be the 

risk-free asset, such that 𝐵0,𝑡 = 𝑒0׬
𝑡
𝑟𝑢𝑑𝑢

The Net Asset Value of an insurance company at time t ∈ [0, T ], denoted as 𝑁𝐴𝑉𝑡, 

is defined as:

 𝑁𝐴𝑉𝑡 = 𝑉 (𝑡, 𝑨) − 𝑉 (𝑡, 𝑳).

where:

▪ 𝑉 (𝑡, 𝑨) is the market-consistent value of the assets 𝑨 = {𝐴𝑡 , 𝑡 ∈ [0, 𝑇 ]};

▪ 𝑉 𝑡, 𝑳  is the market-consistent value of the assets  𝑳 = {𝐿𝑡 , 𝑡 ∈ [0, 𝑇 ]}.

The cash flows A and L depend on some risk drivers denoted as

𝑿 = {𝑿𝒕 ∈ ℝ𝑞0 , 𝑡 ∈ [0, 𝑇 ]}.

ECA 2024
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Solvency Capital Requirement

6

The Solvency Capital Requirement (SCR) determines the amount of capital

ensuring that an undertaking will be able to meet its obligations over 1 year

with a probability of 99.5 %.

It can be mathematically formalized as: 

𝑆𝐶𝑅0.995 = 𝑉𝑎𝑅0.995 𝑁𝐴𝑉1 − 𝔼 𝑁𝐴𝑉1 𝑣 0,1

where 𝑣 0,1  is the price of a one-year ZCB, and 𝑉𝑎𝑅τ 𝑁𝐴𝑉1 is:

𝑉𝑎𝑅τ 𝑁𝐴𝑉1 = inf{ 𝑥 ∈ ℝ : 𝐹𝑁𝐴𝑉 𝑥 ≥ τ}

At the security level τ ∈ ]0,1[.

The SCR calculation involves 𝑭𝑵𝑨𝑽
1 that is generally unknown.

1 that is called the Probability Distribution Forecast (PDF) in the Directive (art. 13).

ECA 2024
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Solvency Capital Requirement Evalutation

7ECA 2024

Source: Jonen, C., Meyhofer, T., & Nikolic, Z. (2023). Neural networks meet least squares Monte Carlo at internal model data. European Actuarial Journal, 
13(1), 399-425.

Figure: Solvency Capital Requirement Evaluation.
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The Nested Simulation Approach

8

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ

ECA 2024
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The Nested Simulation Approach

9

Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ

2. Evaluating the NAV1 in each scenario as: 

 𝑁𝐴𝑉1
(𝑖)
= 𝑉(𝑖) 1, 𝑨 − 𝑉 𝑖 1, 𝑳 𝑖 = 1,… , 𝑛ℙ
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The Nested Simulation Approach
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Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ

2. Evaluating the NAV in each scenario as: 

 𝑁𝐴𝑉1
(𝑖)
= 𝑉(𝑖) 1, 𝑨 − 𝑉 𝑖 1, 𝑳 𝑖 = 1,… , 𝑛ℙ

However 𝑣 𝑖 1, 𝑳 = 𝔼ℚ[σ𝑡=2
𝑇 𝐿𝑡

𝐵1,𝑡
| 𝑿1

(𝑖)
] required to be computed numerically by simulating, under 

the risk-neutral measure ℚ, sample paths 𝑿𝑡
𝑗

𝑡∈ 1,𝑇
, 𝑗 = 1,… , 𝑛ℚ and evaluating:

෠𝑉𝑛ℚ
𝑖
1, 𝑳 =

1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
(𝑖,𝑗)

𝐵1,𝑡
(𝑖,𝑗)

, 𝑖 = 1,… , 𝑛ℙ

ECA 2024



www.eca2024.org

The Nested Simulation Approach
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Bauer et al. (2013) suggests a two-step procedure:

1. Simulating under the real-world measure ℙ, sample paths 𝑿𝑡
𝑖

𝑡∈[0,1]
, 𝑖 = 1,… , 𝑛ℙ

2. Evaluating the NAV in each scenario as: 

 𝑁𝐴𝑉1
(𝑖)
= 𝑉(𝑖) 1, 𝑨 − 𝑉 𝑖 1, 𝑳 𝑖 = 1,… , 𝑛ℙ

However 𝑣 𝑖 1, 𝑳 = 𝔼ℚ[σ𝑡=2
𝑇 𝐿𝑡

𝐵1,𝑡
| 𝑿1

(𝑖)
] required to be computed numerically by simulating, under 

the risk-neutral measure ℚ, sample paths 𝑿𝑡
𝑗

𝑡∈ 1,𝑇
, 𝑗 = 1,… , 𝑛ℚ and evaluating:

෠𝑉𝑛ℚ
𝑖
1, 𝑳 =

1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
(𝑖,𝑗)

𝐵1,𝑡
(𝑖,𝑗)

, 𝑖 = 1,… , 𝑛ℙ

Nested Simulations! The computational cost is proportional to 𝑛ℙ × 𝑛ℚ

ECA 2024
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Computational cost: an example

12

For example, if we consider:

1. 𝑛ℙ = 100000;

2. 𝑛ℚ = 100;

3. The computational time of the procedure for the SCR calculation is:

ECA 2024
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Computational cost: an example

13

For example, if we consider:

1. 𝑛ℙ = 100000;

2. 𝑛ℚ = 100;

3. The computational time of the procedure for the SCR calculation is:

100000 × 100 × 1 sec ≈ 115 𝑑𝑎𝑦𝑠.

ECA 2024
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Least Square Monte Carlo (Longstaff and Schwartz, 2001)

14

If the conditional expectation function belongs to the 𝐿2-space, it can be expressed as

𝑉 𝑖 1, 𝑳 = 𝜇 𝑿1 = ෍

𝑘=0

∞

β 𝑘 𝜓 𝑘 (𝑿1)

here {𝜓(𝑘)(·), 𝑘 = 1, . . . , ∞} form an orthonormal basis of 𝐿2 and {β(𝑘)(·), 𝑘 =

1, . . . , ∞} are some coefficients. An approximation can be obtained by considering a 

finite set of K basis

Ƹ𝜇 𝑂𝑃 𝑿1 = ෍

𝑘=0

∞

β 𝑘 𝜓 𝑘 (𝑿1)

and estimating the parameters by solving

෡𝜷 = arg min
β∈ ℝ𝑘

෍

𝑖=1

𝑛ℙ
1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− ෍

𝑘=0

∞

β 𝑘 𝜓 𝑘 𝑿1

2

ECA 2024
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Nested Simulations Vs Least Squares Monte Carlo

15ECA 2024

Figure: Graphical representation of the Nested simulations and the Least Square Monte Carlo 
approaches.
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Least Squares Monte Carlo and the curse of dimensionality

16

The number of terms in the polynomial regression grows with the number of the 

risk drivers and the maximum degree of the polynomials m:

Table: Number of terms for polynomial given 𝑚 and 𝑞0

ECA 2024
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Neural Networks

17

Let be  𝒙 ∈ ℝ𝑞0 the vector of features, a fully connected (FC) layer of size 𝑞1 ∈ ℕ

is a function

𝒛 ∈ ℝ𝑞0 → ℝ𝑞1 , 𝒙 ↦ 𝒛 𝒙 = 𝑧1 𝒙 , 𝑧2 𝒙 , . . . , 𝑧𝑞1 𝒙
𝑇

Each component 𝑧𝐽 𝑥  is a non-linear function of 𝒙

𝒙 ↦ 𝒛𝒋 𝒙 = 𝜙 𝑤𝑗,0 +෍

𝐼=1

𝑞0

𝑤𝑗,𝐼𝑥𝐼 = 𝜙 𝑤𝑗,0+ < 𝒘𝑗 , 𝒙 > , 𝑗 = 1, . . . , 𝑞1,

where 𝜙 ∶ ℝ → ℝ is the activation function, 𝑤𝑗,𝐼 ∈ ℝ represent the network parameters and < ,> denotes the scalar 

product in ℝq0.

ECA 2024
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Deep Neural Networks

18

In the case of d layers of size 𝑞 = 𝑞𝑘 1≤𝑘≤𝑑 ∈ ℕ𝑑 , the mapping reads:

𝑥 ↦ 𝑧(𝑑:1) ≝ 𝑧 𝑑
°… ° 𝑧

1 𝑥 ∈ ℝ𝑞𝑑

Where 𝑧(𝑘): ℝ𝑞𝑘−1 → ℝ𝑞𝑘 . In the case of univariate response, the output of the network is:

𝑥 ↦ 𝜇𝑤 𝑥 ≝ 𝜓𝑊
𝐹𝐹𝑁 𝑥 ≝ 𝑔−1 𝑤0

𝑑+1
+ ෍

𝐼=1

𝑞𝑑

𝑤𝐼
𝑑+1

𝑧𝐼
𝑑:1

𝑥 ,

𝑔−1 is an inverse link function.

ECA 2024
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The LSMC-DL method

19

Since our aim consists of approximating a conditional expectation function we use 

the MSE as loss function. The training of the network requires the optimisation:

෡𝑊𝑛ℚ = 𝑤∈ℝ𝑀
𝑎𝑟𝑔𝑚𝑖𝑛

෍

𝑖=1

𝑛ℙ
1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− 𝜓𝑊
𝐹𝐹𝑁 𝑿𝟏

2

where 𝑊 is the vector of the neural network parameters.

ECA 2024
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෍

𝑖=1

𝑛ℙ
1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2
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where 𝑊 is the vector of the neural network parameters.

ECA 2024
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The localGLMnet model of Richman and Wuthrich (2023)

21

Let 𝜓𝑊 be a neural network with output dimension equal to the input dimension 𝑞0:

𝜓𝑊 ∶ ℝ𝑞0 → ℝ𝑞0 , 𝑥 ↦ 𝜓𝑊 𝑥 ,

having network weights W . The LocalGLMnet regression function is defined by

𝑥 ↦ 𝜇𝑊,β0
𝑥 ≝ 𝑔−1 β0 + β 𝑥 𝑇𝑋 ,

where 𝑔 ∶ ℝ → ℝ is the link function, β0 ∈ ℝ, and β 𝑥 = 𝜓𝑊 𝑥 .

1. If β𝑗 𝑥 ≡ β𝑗 is not feature dependent.

2. If β𝑗 𝑥 ≡ 0, term β𝑗 𝑥 𝑥𝑗 is dropped altogether.

3. If β𝑗 𝑥 = β𝑗 𝑥𝑗 , term β𝑗 𝑥 𝑥𝑗 does not interact with any other terms 𝑥𝑗′ , 𝑗
′ ≠ 𝑗.

4. Interactions can be studied by considering the gradient of β𝑗 𝑥

∇β𝑗 𝑥 = 𝜕x1β𝑗 𝑥 , . . . , 𝜕xq0β𝑗 𝑥
𝑇

∈ ℝ𝑞0

ECA 2024
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The LSMC-LGN method

22

The training of the localGLMnet induces the following optimisation:

(β0,𝑛ℚ,
෡𝑊𝑛ℚ ) = 𝑤∈ℝ𝑀 ,β0∈ℝ

𝑎𝑟𝑔𝑚𝑖𝑛
෍

𝑖=1

𝑛ℙ
1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− 𝜇𝑊,β0
𝑿𝟏

2

where

ECA 2024
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The LSMC-LGN method

23

The training of the localGLMnet induces the following optimisation:

(෠β0,𝑛ℚ,
෡𝑊𝑛ℚ ) = 𝑤∈ℝ𝑀 ,β0∈ℝ

𝑎𝑟𝑔𝑚𝑖𝑛
෍

𝑖=1

𝑛ℙ
1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− 𝜇𝑊,β0
𝑿𝟏

2

where

ECA 2024

Some connections with the local-LSMC proposed by Hainaut & Akbaraly (2023)!
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Numerical Experiments’ Setting

24

We consider a simplified insurance portfolio consisting of one with-profit mixed 

insurance contract affected by 4 risk factors.

Three LSMC-style methods with approximation based on:

▪ Orthogonal polynomials (LSMC-OP); 

▪ Deep learning (LSMC-DL); 

▪ LocalGLMnet (LSMC-LGN).

We calibrate the methods using data obtained by setting:

▪ 𝑛ℙ = 10000;

▪ 𝑛ℚ = 21, 22, . . . , 210.

The benchmark is the Nested Simulation approach with 𝑛ℙ = 10000.

ECA 2024



www.eca2024.org

The role of 𝒏ℚ in the LSMC methods

25ECA 2024

Figure: Left: estimated NAV distributions obtained with the different approaches (NS, LSMC-OP, LSMC-DL, LSMC-LGN) 

for 𝑛ℚ ∈ {21, 25, 210}. 

Right: Normalised Root Mean Squared Error produced by the LSMC-style methods for 𝑛ℚ = 2𝐼 , 𝐼 = 1,2, … , 10.
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Importance Variable

26

The estimated regression attention 1 ≤ 𝑘 ≤ 𝑞0, allow us to quantity variable 

importance. A simple measure can be defined by:

𝑉𝐼(𝑘) =
1

𝑛
෍

𝑖

෣𝛽𝑛ℚ

(𝑘)
𝑿1
𝑖

▪ A large 𝑉𝐼(𝑘) value suggests that the k-th component has a notable effect on 

the response; 

▪ A small 𝑉𝐼(𝑘) value suggests that the k-th component has a limited effect on 

the response.

ECA 2024
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The Attention Coefficients ෡𝜷𝟎,𝒏ℚ 𝑿𝟏
𝒊

27ECA 2024

Figure: Attention coefficients መ𝛽0,𝑛ℚ 𝑋1
𝑖 , 1 ≤ 𝑖 ≤ 𝑛ℙ, of the LSMC-LGN model. 
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The Contribution Value ෡𝜷𝟎,𝒏ℚ 𝑿𝟏
𝒊 𝑿𝟏,𝒌

(𝒊)

28ECA 2024

Figure: Attention coefficients መ𝛽0,𝑛ℚ 𝑋1
𝑖 𝑋1,𝑘 , 1 ≤ 𝑖 ≤ 𝑛ℙ, of the LSMC-LGN model. 
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Measuring the Interactions

29ECA 2024

Figure: Spline fits to the sensitivities ∂𝑥1,𝑢
መ𝛽0,𝑛ℚ 𝑋1

𝑖 , 1 ≤ 𝑢, 𝑘 ≤ 4 over the scenarios , 𝑖 = 1, … , 𝑛ℙ
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Numerical Experiments’ Setting

30

We consider a more realistic insurance portfolio consisting of several insurance 

contracts affected by 23 risk factors. 

Two simulated samples:

ECA 2024

Table: Execution time of nested simulations with different values of 𝑛ℙ and 𝑛ℚ. The values refer to a parallel 

computing system, consisting of 152 cores. 
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Regularisation within the LSMC-LGN model

31

ElasticNet regularisation could be introduced in the LSMC-LGN to encourage                                  

sparsity in the attention coefficients and perform feature selection. 

In this case, the network training aims to minimize

(β0, ෡𝑊) = β0,𝑊
𝑎𝑟𝑔𝑚𝑖𝑛

෍

𝑖=1

𝑛ℙ
1

𝑛ℚ
෍

𝑗=1

𝑛ℚ

෍

𝑡=2

𝑇
𝐿𝑡
𝑖,𝑗

𝐵1,𝑡
𝑖,𝑗

− β0 − ෍

𝑘=1

𝑞0

β𝑊
𝑘

𝑥1 𝑥1,𝑘

2

+ ƞ 1 − α β𝑊 𝒙1 2
2 + α β𝑊 𝒙1 1

with regularisation parameters η ≥ 0 and α ∈ [0, 1]: 

▪ α = 0 → ridge regularisation; 

▪ α = 1 → LASSO regularisation.

ECA 2024
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Regularisation within the LSMC-LGN model

32ECA 2024

Table: MSE values on the training and validation sets of the regularised LSMC-LGN for the different values of η.
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Regularisation within the LSMC-LGN model

33ECA 2024

Figure: Importance measures 𝑉𝐼
𝑛ℚ
′
𝑘
(ƞ) of the different risk factors for ƞ = 0, ොƞ𝑜𝑝𝑡
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The Attention Coefficients ෡𝜷𝒏ℚ 𝑿𝟏
𝒊

34ECA 2024

Figure: Attention coefficients መ𝛽 𝑋1
𝑖 , 1 ≤ 𝑖 ≤ 𝑛ℙ of the LSMC-LGN model related to the risk factors k = 1, . . . , 23 in the 

cases of ƞ = 0 𝑎𝑛𝑑 ƞ = ොƞ𝑜𝑝𝑡 The red lines refer to the coefficients of the linear regression model.
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Results

35ECA 2024

Table: Out-of-Sample NRMSE and relative error in the SCR estimation produced by the different LSMC-style methods.



www.eca2024.org

Conclusions

36

▪ Assessing the SCR via nested simulations can pose computational challenges.

 

▪ Neural Networks are effective in alleviating the computational cost of SCR 

calculations, but they operate as black boxes. 

▪ localGLMnet allows for model explainability and yields accurate results.

▪ Regularisation can improve performance and enhance the robustness of the 

method.

ECA 2024
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Mail: salvatore.scognamiglio@uniparthenope.it

Linkedin:

Thank you
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