

ulm university universität **UUUIM**

Mean Variance Optimization for Participating Life Insurance Contracts

6th Fudan-UIm Symposium on Finance and Insurance | Felix Fießinger & Mitja Stadje | 5th September 2024

- Investment problem: " $\max_{\text{strategies}} Mean(Y) Variance(Y)$ " ►
- \rightarrow find optimal strategy
- Y: payoff of insurer
- Aim: find optimal terminal wealth and optimal investment strategy
- on top: show existence of all parameter ►

- Investment problem: " $\max_{\text{strategies}} Mean(Y) Variance(Y)$ " ►
- \rightarrow find optimal strategy
- Y: payoff of insurer
- ► Aim: find optimal terminal wealth and optimal investment strategy
- on top: show existence of all parameter ►

Participating Life Insurance Contracts:

crucial role in the Life Sector

Figure: Market share in 2022 of the gross premium separated by the line of business in the life sector. Data source: European Insurance Overview from the EIOPA (2023)

0

2

6

8

Participating Life Insurance Contracts:

2 main products: without or with guarantee for the policyholders

5th September 2024

Non-protected participating life insurance Protected participating life insurance 5 5 ω ω Ś ø 4 4 \sim \sim 0 0 k_2 k 0 k_2 k_1 Ŷ 2

Figure: Payoffs of the insurer.

0

2

4

6

10

8

10

- Main difficulty: non-linearity in $Var(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ ►
- \rightarrow give an equivalent problem as in Zhou & Li (2000)
- Lagrangian optimization, e.g., Basak & Shapiro (2001)
- optimize Participating Life Insurance Contracts:
- Problem: non-convexity resp. non-concavity of the payoff function ►
- Lin et al. (2017), Nguyen & Stadje (2020) for S-shaped utility functions ►

- Main difficulty: non-linearity in $Var(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ ►
- \rightarrow give an equivalent problem as in Zhou & Li (2000)
- Lagrangian optimization, e.g., Basak & Shapiro (2001)
- optimize Participating Life Insurance Contracts:
- Problem: non-convexity resp. non-concavity of the payoff function ►
- Lin et al. (2017), Nguyen & Stadje (2020) for S-shaped utility functions ►

- Main difficulty: non-linearity in $Var(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ ►
- \rightarrow give an equivalent problem as in Zhou & Li (2000)
- Lagrangian optimization, e.g., Basak & Shapiro (2001)
- ► optimize Participating Life Insurance Contracts:
- Problem: non-convexity resp. non-concavity of the payoff function ►
- Lin et al. (2017), Nguyen & Stadje (2020) for S-shaped utility functions ►

Structure

Model Setup

Optimization in the Black-Scholes market

Numerical Results

Optimization in an Incomplete Market

Structure

Model Setup

Optimization in the Black-Scholes market

Numerical Results

Optimization in an Incomplete Market

- \blacktriangleright T > 0 finite time horizon
- ▶ 1 risk-free asset: $dB_t = B_t r_t dt$
- *d* risky assets: $dS_t^i = S_t^i \mu_t^i dt + S_t^i \sigma_t^i dW_t$
- \blacktriangleright strategies: u^i denotes the fraction of wealth invested in risky asset *i*, progressively measurable and square-integrable
- lack wealth: $dX_t = X_t \left[r_t + u_t^T (\mu_t r) \right] dt + X_t u_t^T \sigma_t dW_t$ with $X_0 = x_0$
- ▶ price density: $d\xi_t = -\xi_t r_t dt \xi_t \kappa_t^T dW_t$ with $\xi_0 = 1$ and the Sharpe ratio process $\kappa_t = (\sigma_t)^{-1}(\mu_t - r_t)$
- lacktriangleright Interpretation: $\xi_T(\omega)$ Arrow-Debreu value per probability unit in state ω at time T
- \blacktriangleright Assume: μ and σ deterministic, σ bounded, bounded away from zero, invertible
- Assume: r, μ integrable, σ , κ square integrable over [0, T]

- \blacktriangleright T > 0 finite time horizon
- ▶ 1 risk-free asset: $dB_t = B_t r_t dt$
- *d* risky assets: $dS_t^i = S_t^i \mu_t^i dt + S_t^i \sigma_t^i dW_t$
- \blacktriangleright strategies: u^i denotes the fraction of wealth invested in risky asset *i*, progressively measurable and square-integrable
- ▶ wealth: $dX_t = X_t \left[r_t + u_t^T (\mu_t r) \right] dt + X_t u_t^T \sigma_t dW_t$ with $X_0 = x_0$
- ▶ price density: $d\xi_t = -\xi_t r_t dt \xi_t \kappa_t^T dW_t$ with $\xi_0 = 1$ and the Sharpe ratio process $\kappa_t = (\sigma_t)^{-1}(\mu_t - r_t)$
- lacktriangleright Interpretation: $\xi_T(\omega)$ Arrow-Debreu value per probability unit in state ω at time T
- \blacktriangleright Assume: μ and σ deterministic, σ bounded, bounded away from zero, invertible
- Assume: r, μ integrable, σ , κ square integrable over [0, T]

- \blacktriangleright T > 0 finite time horizon
- ▶ 1 risk-free asset: $dB_t = B_t r_t dt$
- d risky assets: $dS_t^i = S_t^i \mu_t^i dt + S_t^i \sigma_t^i dW_t$
- \blacktriangleright strategies: u^i denotes the fraction of wealth invested in risky asset *i*, progressively measurable and square-integrable
- ▶ wealth: $dX_t = X_t \left[r_t + u_t^T (\mu_t r) \right] dt + X_t u_t^T \sigma_t dW_t$ with $X_0 = x_0$
- ▶ price density: $d\xi_t = -\xi_t r_t dt \xi_t \kappa_t^T dW_t$ with $\xi_0 = 1$ and the Sharpe ratio process $\kappa_t = (\sigma_t)^{-1}(\mu_t - r_t)$
- lacktriangleright Interpretation: $\xi_T(\omega)$ Arrow-Debreu value per probability unit in state ω at time T
- \blacktriangleright Assume: μ and σ deterministic, σ bounded, bounded away from zero, invertible
- Assume: r, μ integrable, σ , κ square integrable over [0, T]

- \blacktriangleright T > 0 finite time horizon
- ▶ 1 risk-free asset: $dB_t = B_t r_t dt$
- d risky assets: $dS_t^i = S_t^i \mu_t^i dt + S_t^i \sigma_t^i dW_t$
- **•** strategies: u^i denotes the fraction of wealth invested in risky asset *i*, progressively measurable and square-integrable
- ▶ wealth: $dX_t = X_t \left[r_t + u_t^T (\mu_t r) \right] dt + X_t u_t^T \sigma_t dW_t$ with $X_0 = x_0$
- ▶ price density: $d\xi_t = -\xi_t r_t dt \xi_t \kappa_t^T dW_t$ with $\xi_0 = 1$ and the Sharpe ratio process $\kappa_t = (\sigma_t)^{-1}(\mu_t - r_t)$
- lacktriangleright Interpretation: $\xi_T(\omega)$ Arrow-Debreu value per probability unit in state ω at time T
- \blacktriangleright Assume: μ and σ deterministic, σ bounded, bounded away from zero, invertible
- Assume: r, μ integrable, σ , κ square integrable over [0, T]►

Optimization Functional

- main target: $J(0, T, \hat{u}, x_0) = \sup_{u \in \mathcal{U}} J(0, T, u, x_0)$
- ▶ functional J: $J(0, T, u, x_0) := \mathbb{E}[F(0, T, u, x_0)] \gamma Var(F(0, T, u, x_0))$ with risk aversion parameter $\gamma > 0$

Function F:

$$F(s, t, u, x) := \alpha \left((X_t - k_1)_+ - k_0 \right) - \alpha_2 (X_t - k_2)_+$$
$$= \begin{cases} -\alpha k_0 & X_t < k_1 \\ \alpha (X_t - k_1 - k_0) & k_1 \le X_t < k_2 \\ \tilde{\alpha} (X_t - k_2) + \alpha (k_2 - k_1 - k_0) & X_t \ge k_2 \end{cases}$$

where $X_{s} = x, 0 \le k_{0}, k_{1} \le k_{2} \le \infty$ with $k_{0} + k_{1} \le k_{2}, 0 \le \alpha_{2} \le \alpha \le \infty$ with $\tilde{\alpha} := \alpha - \alpha_2$ (Note: $0 < \tilde{\alpha} < \alpha$)

Notation: $F(X_T)$ instead of F(0, T, u, x) if u is clear

Model Setup

Optimization Functional

- main target: $J(0, T, \hat{u}, x_0) = \sup_{u \in \mathcal{U}} J(0, T, u, x_0)$
- functional J: $J(0, T, u, x_0) := \mathbb{E}[F(0, T, u, x_0)] \gamma Var(F(0, T, u, x_0))$ with risk aversion parameter $\gamma > 0$

Function F:

$$F(s, t, u, x) := \alpha \left((X_t - k_1)_+ - k_0) - \alpha_2 (X_t - k_2)_+ \right)$$
$$= \begin{cases} -\alpha k_0 & X_t < k_1 \\ \alpha (X_t - k_1 - k_0) & k_1 \le X_t < k_2 \\ \tilde{\alpha} (X_t - k_2) + \alpha (k_2 - k_1 - k_0) & X_t \ge k_2 \end{cases}$$

where $X_{s} = x, 0 < k_{0}, k_{1} < k_{2} < \infty$ with $k_{0} + k_{1} < k_{2}, 0 < \alpha_{2} < \alpha < \infty$ with $\tilde{\alpha} := \alpha - \alpha_2$ (Note: $0 < \tilde{\alpha} < \alpha$)

Notation: $F(X_T)$ instead of F(0, T, u, x) if u is clear ►

Optimization Functional

► Function *F*:

$$F(s, t, u, x) = \begin{cases} -\alpha k_0 & X_t < k_1 \\ \alpha (X_t - k_1 - k_0) & k_1 \le X_t < k_2 \\ \tilde{\alpha} (X_t - k_2) + \alpha (k_2 - k_1 - k_0) & X_t \ge k_2 \end{cases}$$

• non-protected contract: $\alpha = 1$, $k_0 = 0$, k_1 is the guarantee

▶ protected contract: $\alpha = 1$, k_0 is the guarantee, $k_1 = 0$

Structure

Model Setup

Optimization in the Black-Scholes market

Numerical Results

Optimization in an Incomplete Market

Equivalent Problem

- ▶ Problem: non-linearity in $Var(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- Solution:
 - ▶ value functional \tilde{J} : $\tilde{J}(0, T, u, x_0) := \mathbb{E}[\lambda F(0, T, u, x_0) \gamma F(0, T, u, x_0)^2]$ with $\lambda = 1 + 2\gamma \mathbb{E}[F(0, T, \hat{u}, x_0)]$ where \hat{u} is the optimal strategy
 - \blacktriangleright solve with λ as a parameter

Lemma

If \hat{u} is an optimal strategy for J, it is also an optimal strategy for \tilde{J} .

Equivalent Problem

- ▶ Problem: non-linearity in Var(X) = E[X²] (E[X])²
- Solution:
 - ▶ value functional \tilde{J} : $\tilde{J}(0, T, u, x_0) := \mathbb{E}[\lambda F(0, T, u, x_0) \gamma F(0, T, u, x_0)^2]$ with $\lambda = 1 + 2\gamma \mathbb{E}[F(0, T, \hat{u}, x_0)]$ where \hat{u} is the optimal strategy
 - solve with λ as a parameter

Lemma

If \hat{u} is an optimal strategy for J, it is also an optimal strategy for \tilde{J} .

Equivalent Problem

- ▶ Problem: non-linearity in Var(X) = E[X²] (E[X])²
- Solution:
 - ▶ value functional \tilde{J} : $\tilde{J}(0, T, u, x_0) := \mathbb{E}[\lambda F(0, T, u, x_0) \gamma F(0, T, u, x_0)^2]$ with $\lambda = 1 + 2\gamma \mathbb{E}[F(0, T, \hat{u}, x_0)]$ where \hat{u} is the optimal strategy
 - solve with λ as a parameter

Lemma

If \hat{u} is an optimal strategy for J, it is also an optimal strategy for \tilde{J} .

Theorem

The optimal terminal wealth \hat{X}_T is given by:

$$\hat{X}_{\mathcal{T}} := \begin{cases} k_2 + \frac{\lambda \tilde{\alpha} - y\xi_{\mathcal{T}}}{2\gamma \tilde{\alpha}^2} - \frac{\alpha}{\tilde{\alpha}} (k_2 - k_1 - k_0) & \xi_{\mathcal{T}} \in (0, \xi_1^*] \\ k_2 & \xi_{\mathcal{T}} \in (\tilde{\alpha} \hat{\xi}, \xi_2^*] \\ k_0 + k_1 + \frac{\lambda \alpha - y\xi_{\mathcal{T}}}{2\gamma \alpha^2} & \xi_{\mathcal{T}} \in (\alpha \hat{\xi}, \xi_3^*] \\ 0 & else \end{cases},$$

where y is the Lagrangian multiplier which solves $\mathbb{E}[\xi_T \hat{X}_T(y)] = \xi_0 x_0$.

Â_T is the optimal wealth of the portfolio, i.e., before distributing
insurer: F(Â_T) = α((Â_T − k₁)₊ − k₀) − α₂(Â_T − k₂)₊

Theorem

The optimal terminal wealth \hat{X}_T is given by:

$$\hat{X}_{\mathcal{T}} := \begin{cases} k_2 + \frac{\lambda \tilde{\alpha} - y \xi_{\mathcal{T}}}{2\gamma \tilde{\alpha}^2} - \frac{\alpha}{\tilde{\alpha}} (k_2 - k_1 - k_0) & \xi_{\mathcal{T}} \in (0, \xi_1^*] \\ k_2 & \xi_{\mathcal{T}} \in (\tilde{\alpha} \hat{\xi}, \xi_2^*] \\ k_0 + k_1 + \frac{\lambda \alpha - y \xi_{\mathcal{T}}}{2\gamma \alpha^2} & \xi_{\mathcal{T}} \in (\alpha \hat{\xi}, \xi_3^*] \\ 0 & else \end{cases}$$

where y is the Lagrangian multiplier which solves $\mathbb{E}[\xi_T \hat{X}_T(y)] = \xi_0 x_0$.

▶ \hat{X}_T is the optimal wealth of the portfolio, i.e., before distributing

► insurer:
$$F(\hat{X}_T) = \alpha((\hat{X}_T - k_1)_+ - k_0) - \alpha_2(\hat{X}_T - k_2)_+$$

Theorem

$$\begin{split} \hat{\xi} &:= \max\left\{0, \frac{\lambda - 2\gamma\alpha(k_2 - k_1 - k_0)}{y}\right\},\\ \bar{\xi} &:= \frac{\lambda\alpha}{y} + \frac{2\gamma\alpha^2 k_0}{y},\\ \tilde{\xi}_1^* &:= \tilde{\alpha}\hat{\xi} - \frac{2\gamma\tilde{\alpha}}{y}\left(\sqrt{\max\left\{0, (\alpha(k_0 + k_1) - \alpha_2 k_2)^2 - \alpha^2 k_0^2 + \frac{\lambda}{\gamma}(\alpha k_1 - \alpha_2 k_2)\right\}} - \tilde{\alpha} k_2\right),\\ \xi_1^* &:= \max\left\{0, \min\left\{\tilde{\alpha}\hat{\xi}, \tilde{\xi}_1^*\right\}\right\},\\ \tilde{\xi}_2^* &:= \frac{\alpha\lambda}{y} - \frac{\gamma\alpha^2(k_2 - k_1)^2 - 2\gamma\alpha^2 k_0(k_2 - k_1) + \lambda\alpha k_1}{yk_2},\\ \xi_2^* &:= \max\left\{\tilde{\alpha}\hat{\xi}, \min\left\{\alpha\hat{\xi}, \tilde{\xi}_2^*\right\}\right\},\\ \xi_3^* &:= \max\left\{\alpha\hat{\xi}, \bar{\xi} - \frac{2\gamma\alpha^2}{y}\left(\sqrt{k_1^2 + k_1\left(2k_0 + \frac{\lambda}{\gamma\alpha}\right)} - k_1\right)\right\}.\end{split}$$

Theorem

In particular, the Lagrange multiplier exists. Note that we suppress the dependence on λ and y for the sake of simplicity in notation unless we state it otherwise in some proofs. Moreover, let ξ^* be as follows:

$$\xi^* := \begin{cases} \xi_3^* & , \text{if } \xi_3^* > \alpha \hat{\xi} \\ \xi_2^* & , \text{if } \xi_3^* = \alpha \hat{\xi}, \xi_2^* > \tilde{\alpha} \hat{\xi} \\ \xi_1^* & , \text{if } \xi_3^* = \alpha \hat{\xi}, \xi_2^* = \tilde{\alpha} \hat{\xi} \end{cases}$$

Then, it holds that $\xi^* > 0$ and $\hat{X}_T > 0$ for $\xi \in (0, \xi^*)$ and $\hat{X}_T = 0$ for $\xi > \xi^*$.

- $(0,\xi_1^*] \cup (\tilde{\alpha}\hat{\xi},\xi_2^*] \cup (\alpha\hat{\xi},\xi_3^*] = (0,\xi^*]$, i.e., these three intervals are connected
- ▶ \hat{X}_T as a function of ξ is continuous and non-increasing in $(0, \xi^*) \cup (\xi^*, \infty)$
- ► There exists always a solution for λ and y and an equation system which can be numerically solved to determine them.

Theorem

In particular, the Lagrange multiplier exists. Note that we suppress the dependence on λ and y for the sake of simplicity in notation unless we state it otherwise in some proofs. Moreover, let ξ^* be as follows:

$$\xi^* := \begin{cases} \xi_3^* & , \text{if } \xi_3^* > \alpha \hat{\xi} \\ \xi_2^* & , \text{if } \xi_3^* = \alpha \hat{\xi}, \xi_2^* > \tilde{\alpha} \hat{\xi} \\ \xi_1^* & , \text{if } \xi_3^* = \alpha \hat{\xi}, \xi_2^* = \tilde{\alpha} \hat{\xi} \end{cases}$$

Then, it holds that $\xi^* > 0$ and $\hat{X}_T > 0$ for $\xi \in (0, \xi^*)$ and $\hat{X}_T = 0$ for $\xi > \xi^*$.

- ▶ $(0, \xi_1^*] \cup (\tilde{\alpha}\hat{\xi}, \xi_2^*] \cup (\alpha\hat{\xi}, \xi_3^*] = (0, \xi^*]$, i.e., these three intervals are connected
- \hat{X}_T as a function of ξ is continuous and non-increasing in $(0, \xi^*) \cup (\xi^*, \infty)$
- There exists always a solution for λ and y and an equation system which can be numerically solved to determine them.

Theorem

In particular, the Lagrange multiplier exists. Note that we suppress the dependence on λ and y for the sake of simplicity in notation unless we state it otherwise in some proofs. Moreover, let ξ^* be as follows:

$$\xi^* := \begin{cases} \xi_3^* & , \text{if } \xi_3^* > \alpha \hat{\xi} \\ \xi_2^* & , \text{if } \xi_3^* = \alpha \hat{\xi}, \xi_2^* > \tilde{\alpha} \hat{\xi} \\ \xi_1^* & , \text{if } \xi_3^* = \alpha \hat{\xi}, \xi_2^* = \tilde{\alpha} \hat{\xi} \end{cases}$$

Then, it holds that $\xi^* > 0$ and $\hat{X}_T > 0$ for $\xi \in (0, \xi^*)$ and $\hat{X}_T = 0$ for $\xi > \xi^*$.

- ▶ $(0, \xi_1^*] \cup (\tilde{\alpha}\hat{\xi}, \xi_2^*] \cup (\alpha\hat{\xi}, \xi_3^*] = (0, \xi^*]$, i.e., these three intervals are connected
- \hat{X}_T as a function of ξ is continuous and non-increasing in $(0, \xi^*) \cup (\xi^*, \infty)$
- ► There exists always a solution for λ and y and an equation system which can be numerically solved to determine them.

Optimal Terminal Wealth of the Insurer

Corollary

The optimal payoff of the insurer is given by:

$$\mathsf{F}(\hat{X}_{\mathcal{T}}) = \begin{cases} \frac{\lambda \tilde{\alpha} - y\xi_{\mathcal{T}}}{2\gamma \tilde{\alpha}} & \xi_{\mathcal{T}} \in (0, \xi_1^*] \\ \alpha(k_2 - k_1 - k_0) & \xi_{\mathcal{T}} \in (\tilde{\alpha}\hat{\xi}, \xi_2^*] \\ \frac{\lambda \alpha - y\xi_{\mathcal{T}}}{2\gamma \alpha} & \xi_{\mathcal{T}} \in (\alpha \hat{\xi}, \xi_3^*] \\ -\alpha k_0 & \textit{else} \end{cases}$$

where $\hat{\xi}$, ξ_1^* , ξ_2^* , and ξ_3^* are as before.

Optimal Strategy

Theorem

The optimal solution \hat{u} is given by:

$$\hat{u}_t = (\sigma_t^T)^{-1} \kappa_t \frac{v_t}{\hat{X}_t},$$

Optimal Strategy

Theorem

$$\begin{split} r_{t} &= \left(k_{2} + \frac{\lambda}{2\gamma\tilde{\alpha}} - \frac{\alpha}{\tilde{\alpha}}(k_{2} - k_{1} - k_{0})\right) \frac{e^{-\int_{t}^{T} r_{s} \mathrm{d}s}}{\sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2} \mathrm{d}s}} \varphi\left(d_{1}\left(\xi_{1}^{*}, t\right)\right) \\ &+ \frac{y}{2\gamma\tilde{\alpha}^{2}} \xi_{t} e^{\int_{t}^{T} - (2r_{s} - \|\kappa_{s}\|^{2}) \mathrm{d}s} \left[\Phi\left(d_{2}\left(\xi_{1}^{*}, t\right)\right) - \frac{1}{\sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2} \mathrm{d}s}} \varphi\left(d_{2}\left(\xi_{1}^{*}, t\right)\right) \right] \\ &+ k_{2} \frac{e^{-\int_{t}^{T} r_{s} \mathrm{d}s}}{\sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2} \mathrm{d}s}} \left(\varphi\left(d_{1}\left(\xi_{2}^{*}, t\right)\right) - \varphi\left(d_{1}\left(\tilde{\alpha}\tilde{\xi}, t\right)\right)\right) \\ &+ \left(k_{0} + k_{1} + \frac{\lambda}{2\gamma\alpha}\right) \frac{e^{-\int_{t}^{T} r_{s} \mathrm{d}s}}{\sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2} \mathrm{d}s}} \left(\varphi\left(d_{1}\left(\xi_{3}^{*}, t\right)\right) - \varphi\left(d_{1}\left(\alpha\tilde{\xi}, t\right)\right)\right) \\ &+ \frac{y}{2\gamma\alpha^{2}} \xi_{t} e^{\int_{t}^{T} - (2r_{s} - \|\kappa_{s}\|^{2}) \mathrm{d}s} \left[\left(\Phi\left(d_{2}\left(\xi_{3}^{*}, t\right)\right) - \Phi\left(d_{2}\left(\alpha\tilde{\xi}, t\right)\right)\right) \\ &- \frac{1}{\sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2} \mathrm{d}s}} \left(\varphi\left(d_{2}\left(\xi_{3}^{*}, t\right)\right) - \varphi\left(d_{2}\left(\alpha\tilde{\xi}, t\right)\right)\right) \right) \end{split}$$

Optimal Strategy

Theorem

$$\begin{split} \hat{X}_{t} &= \left(k_{2} + \frac{\lambda}{2\gamma\tilde{\alpha}} - \frac{\alpha}{\tilde{\alpha}}(k_{2} - k_{1} - k_{0})\right)e^{-\int_{t}^{T}r_{s}\mathrm{d}s}\Phi\left(d_{1}\left(\xi_{1}^{*}, t\right)\right) \\ &- \frac{y}{2\gamma\tilde{\alpha}^{2}}\xi_{t}e^{\int_{t}^{T} -(2r_{s} - \|\kappa_{s}\|^{2})\mathrm{d}s}\Phi\left(d_{2}\left(\xi_{1}^{*}, t\right)\right) \\ &+ k_{2}e^{-\int_{t}^{T}r_{s}\mathrm{d}s}\left(\Phi\left(d_{1}\left(\xi_{2}^{*}, t\right)\right) - \Phi\left(d_{1}\left(\tilde{\alpha}\hat{\xi}, t\right)\right)\right) \\ &+ \left(k_{0} + k_{1} + \frac{\lambda}{2\gamma\alpha}\right)e^{-\int_{t}^{T}r_{s}\mathrm{d}s}\left(\Phi\left(d_{1}\left(\xi_{3}^{*}, t\right)\right) - \Phi\left(d_{1}\left(\alpha\hat{\xi}, t\right)\right)\right) \\ &- \frac{y}{2\gamma\alpha^{2}}\xi_{t}e^{\int_{t}^{T} -(2r_{s} - \|\kappa_{s}\|^{2})\mathrm{d}s}\left(\Phi\left(d_{2}\left(\xi_{3}^{*}, t\right)\right) - \Phi\left(d_{2}\left(\alpha\hat{\xi}, t\right)\right)\right)), \\ d_{1}(x, t) &= \frac{\ln x - \ln\xi_{t} + \int_{t}^{T}r_{s} - \frac{\|\kappa_{s}\|^{2}}{2}\mathrm{d}s}{\sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2}}\mathrm{d}s} = d_{1}(x, t) - \sqrt{\int_{t}^{T} \|\kappa_{s}\|^{2}}\mathrm{d}s \end{split}$$

Structure

Model Setup

Optimization in the Black-Scholes market

Numerical Results

Optimization in an Incomplete Market

Parametrization

 $k_0 = 0 / k_0 = 2.5$ \blacktriangleright d = 1 $k_1 = 2.5 / k_1 = 0$ r = 0.02▶ $k_2 = 7$ harphi = 0.08 $\blacktriangleright \alpha = 1$ σ = 0.2 $\sim \alpha_2 = 0.25$ $\blacktriangleright \kappa = 0.3$ $\sim \gamma = 0.25$ $\blacktriangleright \delta = 0.01$ $x_0 = 4$ T = 10N = 1000

For a comparison:

• S-shaped utility function:
$$U(x) = \begin{cases} x^{\tilde{\gamma}} & x \ge 0\\ -\tilde{\lambda}(-x)^{-\tilde{\gamma}} & x < 0 \end{cases}$$
 with $\tilde{\lambda} = 2$ and different values for $\tilde{\gamma}$

- comparison with results from expected utility of Lin et al. (2017)
- different risk aversion levels

Optimal terminal wealth - Non-protected

Optimal terminal wealth - Protected

• influence of participation rate α_2

Optimal terminal wealth - Non-protected

Optimal terminal wealth - Protected

Non-protected participating life insurance contract

Wealth process with X_0 = 4

Optimal strategy

comparably riskier strategies if economy evolves bad

comparably safer strategies if economy evolves extremely good

Page

Protected participating life insurance contract

Wealth process with X 0 = 4

Optimal strategy

extreme strategy changes if final value is close to k_2 ►

- Comparison between both participating contracts and a non-participation contract
- x_0 is chosen such that \hat{X}_T is approximately equal in these cases ►

- Comparison between both participating contracts with mean-variance and expected utility
- ▶ x_0 is chosen such that \hat{X}_T is approximately equal in these cases

Structure

Model Setup

Optimization in the Black-Scholes market

Numerical Results

Optimization in an Incomplete Market

Setting adaptations

- wealth process: dX_t = b(X_t, u_t)dt + σ(X_t, u_t)dW_t where b and σ are measurable functions which satisfy a uniform Lipschitz condition
- ▶ value functional: $V(t,x) = \sup_{u \in \mathcal{U}(t,x)} \tilde{J}(t, T, u, x) =$ $\sup_{u \in \mathcal{U}(t,x)} \mathbb{E}[\lambda F(0, T, u, x_0) - \gamma F(0, T, u, x_0)^2]$ where $\mathcal{U}(t,x)$ denotes the subset of \mathcal{U} with processes starting at t and $X_t = x$

• remember:
$$\lambda = 1 + 2\gamma \mathbb{E} \left[F(0, T, \hat{u}, x_0) \right]$$

Theorem

If $V \in C^{1,2}$, then for every $\lambda \ge 0$ the optimal value functional V is the solution of the following SDE for all $(t, x) \in [0, T) \times \mathbb{R}$:

$$-\frac{\mathrm{d}V}{\mathrm{d}t}(t,x) - \sup_{u \in \mathcal{U}} \mathcal{L}^{u} V(t,x) = 0,$$
$$V(T,x) = F(T,T,0,x),$$

where the operator \mathcal{L}^u is defined as

$$\mathcal{L}^{\boldsymbol{u}}\boldsymbol{v}(t,x) := \boldsymbol{b}(x,\boldsymbol{u})\frac{\mathrm{d}\boldsymbol{V}}{\mathrm{d}x}(t,x) + \frac{1}{2}\sigma(x,\boldsymbol{u})\sigma^{\mathsf{T}}(x,\boldsymbol{u})\frac{\mathrm{d}^{2}\boldsymbol{V}}{\mathrm{d}x^{2}}(t,x),$$

where tr denotes the trace of a matrix.

Theorem

Let the control space \mathcal{U} be compact and the Hamiltonian H defined as usual, i.e.:

$$H:[0,T)\times\mathbb{R}\times\mathbb{R}\times\mathbb{R}\to\mathbb{R},$$
$$H(t,x,p,M):=\sup_{u\in\mathcal{U}}\left[b(x,u)\frac{\mathrm{d}V}{\mathrm{d}x}(t,x)+\frac{1}{2}\sigma(x,u)\sigma^{T}(x,u)\frac{\mathrm{d}^{2}V}{\mathrm{d}x^{2}}(t,x)\right].$$

If V is locally bounded on $[0, T) \times \mathbb{R}$, then for every $\lambda \ge 0$ V is a viscosity solution of the following Hamilton-Jacobi-Bellman (HJB) equation for $(t, x) \in [0, T) \times \mathbb{R}$:

$$\begin{aligned} -\frac{\mathrm{d}V}{\mathrm{d}t}(t,x) - H\left(t,x,\frac{\mathrm{d}V}{\mathrm{d}x}(t,x),\frac{\mathrm{d}^2V}{\mathrm{d}x^2}(t,x)\right) &= 0, \\ V(T,x) &= F(T,T,0,x). \end{aligned}$$

can relax the assumption of \mathcal{U} being compact

Thank you for your attention!

Preprint available: https://arxiv.org/pdf/2407.11761

References I

- Bacinello, Anna Rita, & Persson, Svein-Arne. 2002. Design and pricing of equity-linked life insurance under stochastic interest rates. The Journal of *Risk Finance*, **3**(2), 6–21.
- Basak, Suleyman, & Shapiro, Alexander. 2001. Value-at-risk-based risk management: optimal policies and asset prices. The review of financial studies, **14**(2), 371–405.
- Briys, Eric, & De Varenne, François. 1997. On the risk of insurance liabilities: debunking some common pitfalls. Journal of Risk and Insurance, 673-694.
- Chen, An, Nguyen, Thai, & Stadje, Mitja. 2018. Optimal investment under VaR-regulation and minimum insurance. Insurance: Mathematics and Economics, 79, 194–209.

References II

- Chen, An, Stadje, Mitja, & Zhang, Fangyuan. 2020. On the equivalence between Value-at-Risk-and Expected Shortfall-based risk measures in non-concave optimization. arXiv preprint arXiv:2002.02229.
- Cochrane, John. 2009. Asset pricing: Revised edition. Princeton university press.
- Cuoco, Domenico, He, Hua, & Isaenko, Sergei. 2008. Optimal dynamic trading strategies with risk limits. Operations Research, 56(2), 358-368.
- Dai, Min, Kou, Steven, Qian, Shuaijie, & Wan, Xiangwei. 2019. Non-concave utility maximization without the concavification principle. Available at SSRN 3422276.
- Dong, Yinghui, Wu, Sang, Lv, Wenxin, & Wang, Guojing. 2020. Optimal asset allocation for participating contracts under the VaR and PI constraint. Scandinavian Actuarial Journal, **2020**(2), 84–109.

References III

- EIOPA. 2023. European Insurance Overview 2023. Tech. rept. European Insurance and Occupational Pensions Authority (EIOPA).
- Gatzert, Nadine, & Kling, Alexander. 2007. Analysis of participating life insurance contracts: A unification approach. Journal of Risk and Insurance, **74**(3), 547–570.
- Hakansson, Nils H. 1971. Capital growth and the mean-variance approach to portfolio selection. Journal of Financial and Quantitative Analysis, $\mathbf{6}(1)$, 517-557.
- He, Lin, Liang, Zongxia, Liu, Yang, & Ma, Ming. 2020. Weighted utility optimization of the participating endowment contract. Scandinavian Actuarial Journal, 2020(7), 577-613.

References IV

- Kraft, Holger, & Steffensen, Mogens. 2013. A dynamic programming approach to constrained portfolios. European Journal of Operational Research, **229**(2), 453-461.
- Larsen, Kasper. 2005. Optimal portfolio delegation when parties have different coefficients of risk aversion. Quantitative Finance, 5(5), 503-512.
- Li, Xun, Zhou, Xun Yu, & Lim, Andrew EB. 2002. Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM Journal on Control and Optimization, 40(5), 1540-1555.
- Liang, Zongxia, Liu, Yang, Ma, Ming, et al. 2021. A Unified Formula of the Optimal Portfolio for Piecewise HARA Utilities. arXiv preprint arXiv:2107.06460.

References V

- Lim, Andrew EB, & Zhou, Xun Yu. 2002. Mean-variance portfolio selection with random parameters in a complete market. Mathematics of Operations *Research*, **27**(1), 101–120.
- Lin, Hongcan, Saunders, David, & Weng, Chengguo. 2017. Optimal investment strategies for participating contracts. Insurance: Mathematics and *Economics.* **73**. 137–155.
- Markowitz, Harry. 1952. Portfolio Selection. *Journal of Finance*, 7(1), 77–91.
- Markowitz, Harry M. 1959. Portfolio Selection: Efficient Diversification of Investments. Yale University Press.
- Merton, Robert C. 1972. An analytic derivation of the efficient portfolio frontier. Journal of financial and quantitative analysis, **7**(4), 1851–1872.

References VI

- Merton, Robert C. 1975. Optimum consumption and portfolio rules in a continuous-time model. Pages 621-661 of: Stochastic optimization models in finance. Elsevier.
- Mi, Hui, Xu, Zuo Quan, & Yang, Dongfang. 2023. Optimal Management of DC Pension Plan with Inflation Risk and Tail VaR Constraint. arXiv preprint arXiv:2309.01936
- Mirza, Charbel, & Wagner, Joël. 2018. Policy characteristics and stakeholder returns in participating life insurance: which contracts can lead to a win-win? European Actuarial Journal, 8, 291–320.
- Nguyen, Thai, & Stadje, Mitja. 2020. Nonconcave optimal investment with value-at-risk constraint: An application to life insurance contracts. SIAM journal on control and optimization, **58**(2), 895–936.

References VII

- Pham, Huyên. 2009. Continuous-time stochastic control and optimization with financial applications. Vol. 61. Springer Science & Business Media.
- Qian, Shuaijie, & Yang, Chen. 2023. Non-Concave Utility Maximization with Transaction Costs. arXiv preprint arXiv:2307.02178.
- Reichlin, Christian. 2013. Utility maximization with a given pricing measure when the utility is not necessarily concave. Mathematics and Financial *Economics*, **7**(4), 531–556.
- Samuelson, Paul A. 1975. Lifetime portfolio selection by dynamic stochastic programming. Stochastic optimization models in finance, 517–524.
- Schmeiser, Hato, & Wagner, Joël. 2015. A proposal on how the regulator should set minimum interest rate guarantees in participating life insurance contracts. Journal of Risk and Insurance, **82**(3), 659–686.

References VIII

- Zhang, Yuanyuan, Li, Xiang, & Guo, Sini. 2018. Portfolio selection problems with Markowitz's mean-variance framework: a review of literature. Fuzzy Optimization and Decision Making, 17, 125–158.
- Zhou, Xun Yu, & Li, Duan. 2000. Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Applied Mathematics and Optimization, **42**, 19–33.