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▶ Investment problem: “ max
strategies

Mean(Y )− Variance(Y )”

→ find optimal strategy

▶ Y : payoff of insurer

▶ Aim: find optimal terminal wealth and optimal investment strategy

▶ on top: show existence of all parameter
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Motivation

Participating Life Insurance Contracts:

▶ crucial role in the Life Sector
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Figure: Market share in 2022 of the gross premium separated by the line of business in

the life sector. Data source: European Insurance Overview from the EIOPA (2023)
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Motivation

Participating Life Insurance Contracts:

▶ 2 main products: without or with guarantee for the policyholders
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Figure: Payoffs of the insurer.
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Motivation

▶ Main difficulty: non-linearity in Var(X ) = E[X 2]− (E[X ])2

→ give an equivalent problem as in Zhou & Li (2000)

▶ Lagrangian optimization, e.g., Basak & Shapiro (2001)

▶ optimize Participating Life Insurance Contracts:

▶ Problem: non-convexity resp. non-concavity of the payoff function

▶ Lin et al. (2017), Nguyen & Stadje (2020) for S-shaped utility functions
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d-dimensional Black-Scholes market

▶ T > 0 finite time horizon

▶ 1 risk-free asset: dBt = Btrtdt

▶ d risky assets: dS i
t = S i

tµ
i
tdt + S i

tσ
i
tdWt

▶ strategies: ui denotes the fraction of wealth invested in risky asset i ,

progressively measurable and square-integrable

▶ wealth: dXt = Xt

[
rt + uTt (µt − r)

]
dt + Xtu

T
t σtdWt with X0 = x0

▶ price density: dξt = −ξtrtdt − ξtκ
T
t dWt with ξ0 = 1 and the Sharpe ratio

process κt = (σt)
−1(µt − rt)

▶ Interpretation: ξT (ω) Arrow-Debreu value per probability unit in state ω at

time T

▶ Assume: µ and σ deterministic, σ bounded, bounded away from zero,

invertible

▶ Assume: r , µ integrable, σ, κ square integrable over [0,T ]
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Optimization Functional

▶ main target: J(0,T , û, x0) = supu∈U J(0,T , u, x0)

▶ functional J: J(0,T , u, x0) := E[F (0,T , u, x0)]− γVar(F (0,T , u, x0)) with

risk aversion parameter γ > 0

▶ Function F :

F (s, t, u, x) := α ((Xt − k1)+ − k0)− α2(Xt − k2)+

=


−αk0 Xt < k1

α(Xt − k1 − k0) k1 ≤ Xt < k2

α̃(Xt − k2) + α(k2 − k1 − k0) Xt ≥ k2

where Xs = x , 0 ≤ k0, k1 ≤ k2 < ∞ with k0 + k1 ≤ k2, 0 ≤ α2 < α < ∞
with α̃ := α− α2 (Note: 0 < α̃ ≤ α)

▶ Notation: F (XT ) instead of F (0,T , u, x) if u is clear
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Optimization Functional

▶ Function F :

F (s, t, u, x) =


−αk0 Xt < k1

α(Xt − k1 − k0) k1 ≤ Xt < k2

α̃(Xt − k2) + α(k2 − k1 − k0) Xt ≥ k2

▶ non-protected contract: α = 1, k0 = 0, k1 is the guarantee

▶ protected contract: α = 1, k0 is the guarantee, k1 = 0
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Equivalent Problem

▶ Problem: non-linearity in Var(X ) = E[X 2]− (E[X ])2

▶ Solution:

▶ value functional J̃: J̃(0,T , u, x0) := E[λF (0,T , u, x0)− γF (0,T , u, x0)
2]

with λ = 1 + 2γE [F (0,T , û, x0)] where û is the optimal strategy

▶ solve with λ as a parameter

Lemma

If û is an optimal strategy for J, it is also an optimal strategy for J̃.
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If û is an optimal strategy for J, it is also an optimal strategy for J̃.



Page 13 6th Fudan-Ulm Symposium on Finance and Insurance | Felix Fießinger | 5th September 2024 Optimization in the Black-Scholes

market

Optimal Terminal Wealth

Theorem

The optimal terminal wealth X̂T is given by:

X̂T :=



k2 +
λα̃− yξT
2γα̃2

− α

α̃
(k2 − k1 − k0) ξT ∈ (0, ξ∗1 ]

k2 ξT ∈ (α̃ξ̂, ξ∗2 ]

k0 + k1 +
λα− yξT
2γα2

ξT ∈ (αξ̂, ξ∗3 ]

0 else

,

where y is the Lagrangian multiplier which solves E[ξT X̂T (y)] = ξ0x0.

▶ X̂T is the optimal wealth of the portfolio, i.e., before distributing

▶ insurer: F (X̂T ) = α((X̂T − k1)+ − k0)− α2(X̂T − k2)+
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Optimal Terminal Wealth

Theorem

ξ̂ := max

{
0,

λ− 2γα(k2 − k1 − k0)

y

}
,

ξ̄ :=
λα

y
+

2γα2k0

y
,

ξ̃∗1 := α̃ξ̂ −
2γα̃

y

(√
max

{
0, (α(k0 + k1)− α2k2)2 − α2k2

0 +
λ

γ
(αk1 − α2k2)

}
− α̃k2

)
,

ξ∗1 := max
{
0,min

{
α̃ξ̂, ξ̃∗1

}}
,

ξ̃∗2 :=
αλ

y
−

γα2(k2 − k1)2 − 2γα2k0(k2 − k1) + λαk1

yk2
,

ξ∗2 := max
{
α̃ξ̂,min

{
αξ̂, ξ̃∗2

}}
,

ξ∗3 := max

{
αξ̂, ξ̄ −

2γα2

y

(√
k2
1 + k1

(
2k0 +

λ

γα

)
− k1

)}
.
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Optimal Terminal Wealth
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Optimal Terminal Wealth

Theorem
In particular, the Lagrange multiplier exists. Note that we suppress the

dependence on λ and y for the sake of simplicity in notation unless we state it

otherwise in some proofs. Moreover, let ξ∗ be as follows:

ξ∗ :=


ξ∗3 ,if ξ∗3 > αξ̂

ξ∗2 ,if ξ∗3 = αξ̂, ξ∗2 > α̃ξ̂

ξ∗1 ,if ξ∗3 = αξ̂, ξ∗2 = α̃ξ̂

.

Then, it holds that ξ∗ > 0 and X̂T > 0 for ξ ∈ (0, ξ∗) and X̂T = 0 for ξ > ξ∗.

▶ (0, ξ∗1 ]∪ (α̃ξ̂, ξ∗2 ]∪ (αξ̂, ξ∗3 ] = (0, ξ∗], i.e., these three intervals are connected

▶ X̂T as a function of ξ is continuous and non-increasing in (0, ξ∗) ∪ (ξ∗,∞)

▶ There exists always a solution for λ and y and an equation system which

can be numerically solved to determine them.
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Optimal Terminal Wealth of the Insurer

Corollary

The optimal payoff of the insurer is given by:

F (X̂T ) =



λα̃− yξT
2γα̃

ξT ∈ (0, ξ∗1 ]

α(k2 − k1 − k0) ξT ∈ (α̃ξ̂, ξ∗2 ]
λα− yξT

2γα
ξT ∈ (αξ̂, ξ∗3 ]

−αk0 else

,

where ξ̂, ξ∗1 , ξ
∗
2 , and ξ∗3 are as before.
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Optimal Strategy

Theorem
The optimal solution û is given by:

ût = (σT
t )

−1κt
vt

X̂t

,
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Optimal Strategy

Theorem

vt =

(
k2 +

λ

2γα̃
−

α

α̃
(k2 − k1 − k0)

)
e−

∫ T
t rsds√∫ T

t ∥κs∥2 ds
φ (d1 (ξ

∗
1 , t))

+
y

2γα̃2
ξte

∫ T
t −(2rs−∥κs∥2)ds

Φ(d2 (ξ
∗
1 , t))−

1√∫ T
t ∥κs∥2 ds

φ (d2 (ξ
∗
1 , t))


+ k2

e−
∫ T
t rsds√∫ T

t ∥κs∥2 ds

(
φ (d1 (ξ

∗
2 , t))− φ

(
d1
(
α̃ξ̂, t

)))

+

(
k0 + k1 +

λ

2γα

)
e−

∫ T
t rsds√∫ T

t ∥κs∥2 ds

(
φ (d1 (ξ

∗
3 , t))− φ

(
d1
(
αξ̂, t

)))
+

y

2γα2
ξte

∫ T
t −(2rs−∥κs∥2)ds

[(
Φ(d2 (ξ

∗
3 , t))− Φ

(
d2
(
αξ̂, t

)))

−
1√∫ T

t ∥κs∥2 ds

(
φ (d2 (ξ

∗
3 , t))− φ

(
d2
(
αξ̂, t

)))
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Optimal Strategy

Theorem

X̂t =

(
k2 +

λ

2γα̃
−

α

α̃
(k2 − k1 − k0)

)
e−

∫ T
t rsdsΦ(d1 (ξ

∗
1 , t))

−
y

2γα̃2
ξte

∫ T
t −(2rs−∥κs∥2)dsΦ(d2 (ξ

∗
1 , t))

+ k2e
−

∫ T
t rsds

(
Φ(d1 (ξ

∗
2 , t))− Φ

(
d1
(
α̃ξ̂, t

)))
+

(
k0 + k1 +

λ

2γα

)
e−

∫ T
t rsds

(
Φ(d1 (ξ

∗
3 , t))− Φ

(
d1
(
αξ̂, t

)))
−

y

2γα2
ξte

∫ T
t −(2rs−∥κs∥2)ds

(
Φ(d2 (ξ

∗
3 , t))− Φ

(
d2
(
αξ̂, t

)))
,

d1(x , t) =
ln x − ln ξt +

∫ T
t rs − ∥κs∥2

2
ds√∫ T

t ∥κs∥2 ds
,

d2(x , t) =
ln x − ln ξt +

∫ T
t rs − 3∥κs∥2

2
ds√∫ T

t ∥κs∥2 ds
= d1(x , t)−

√∫ T

t
∥κs∥2 ds
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Parametrization

▶ k0 = 0 / k0 = 2.5

▶ k1 = 2.5 / k1 = 0

▶ k2 = 7

▶ α = 1

▶ α2 = 0.25

▶ γ = 0.25

▶ x0 = 4

▶ T = 10

▶ d = 1

▶ r = 0.02

▶ µ = 0.08

▶ σ = 0.2

▶ κ = 0.3

▶ δ = 0.01

▶ N = 1000

For a comparison:

▶ S-shaped utility function: U(x) =

x γ̃ x ≥ 0

−λ̃(−x)−γ̃ x < 0
with λ̃ = 2 and

different values for γ̃
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▶ comparison with results from expected utility of Lin et al. (2017)

▶ different risk aversion levels
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▶ influence of participation rate α2
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▶ Non-protected participating life insurance contract
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▶ comparably riskier strategies if economy evolves bad

▶ comparably safer strategies if economy evolves extremely good
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▶ Protected participating life insurance contract
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▶ extreme strategy changes if final value is close to k2
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▶ Comparison between both participating contracts and a non-participation

contract

▶ x0 is chosen such that X̂T is approximately equal in these cases
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▶ Comparison between both participating contracts with mean-variance and

expected utility

▶ x0 is chosen such that X̂T is approximately equal in these cases
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Setting adaptations

▶ wealth process: dXt = b(Xt , ut)dt + σ(Xt , ut)dWt where b and σ are

measurable functions which satisfy a uniform Lipschitz condition

▶ value functional: V (t, x) = supu∈U(t,x) J̃(t,T , u, x) =

supu∈U(t,x) E[λF (0,T , u, x0)− γF (0,T , u, x0)
2] where U(t, x) denotes the

subset of U with processes starting at t and Xt = x

▶ remember: λ = 1 + 2γE [F (0,T , û, x0)]
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Theorem

If V ∈ C 1,2, then for every λ ≥ 0 the optimal value functional V is the solution

of the following SDE for all (t, x) ∈ [0,T )× R:

−dV

dt
(t, x)− sup

u∈U
LuV (t, x) = 0,

V (T , x) = F (T ,T , 0, x),

where the operator Lu is defined as

Luv(t, x) := b(x , u)
dV

dx
(t, x) +

1

2
σ(x , u)σT (x , u)

d2V

dx2
(t, x),

where tr denotes the trace of a matrix.
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Theorem
Let the control space U be compact and the Hamiltonian H defined as usual,

i.e.:

H : [0,T )× R× R× R → R,

H(t, x , p,M) := sup
u∈U

[
b(x , u)

dV

dx
(t, x) +

1

2
σ(x , u)σT (x , u)

d2V

dx2
(t, x)

]
.

If V is locally bounded on [0,T )× R, then for every λ ≥ 0 V is a viscosity

solution of the following Hamilton-Jacobi-Bellman (HJB) equation for

(t, x) ∈ [0,T )× R:

−dV

dt
(t, x)− H

(
t, x ,

dV

dx
(t, x),

d2V

dx2
(t, x)

)
= 0,

V (T , x) = F (T ,T , 0, x).

▶ can relax the assumption of U being compact
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Thank you for your attention!

Preprint available: https://arxiv.org/pdf/2407.11761
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