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> Y: payoff of insurer

Aim: find optimal terminal wealth and optimal investment strategy
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Motivation

Participating Life Insurance Contracts:

» crucial role in the Life Sector
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Figure: Market share in 2022 of the gross premium separated by the line of business in

the life sector. Data source: European Insurance Overview from the EIOPA (2023)

@
]
]



6th Fudan-Ulm Symposium on Finance and Insurance |  Felix FieBinger | 5t/ September 2024 Motivation

Motivation

Participating Life Insurance Contracts:
> 2 main products: without or with guarantee for the policyholders
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Figure: Payoffs of the insurer.
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Motivation
» Main difficulty: non-linearity in Var(X) = E[X?] — (E[X])?
—» give an equivalent problem as in Zhou & Li (2000)

Lagrangian optimization, e.g., Basak & Shapiro (2001)

optimize Participating Life Insurance Contracts:
Problem: non-convexity resp. non-concavity of the payoff function

Lin et al. (2017), Nguyen & Stadje (2020) for S-shaped utility functions
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» Main difficulty: non-linearity in Var(X) = E[X?] — (E[X])?
— give an equivalent problem as in Zhou & Li (2000)

> Lagrangian optimization, e.g., Basak & Shapiro (2001)
> optimize Participating Life Insurance Contracts:

> Problem: non-convexity resp. non-concavity of the payoff function

> Lin et al. (2017), Nguyen & Stadje (2020) for S-shaped utility functions
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d-dimensional Black-Scholes market

» T > 0 finite time horizon

» 1 risk-free asset: dB; = B;r:dt

> d risky assets: dS! = Siuidt + SioldW,
strategies: u' denotes the fraction of wealth invested in risky asset i,
progressively measurable and square-integrable
wealth: dX; = X, [rt +uf (ue — r)] dt + Xeu! o, dW; with Xo = xo
price density: d&; = —&;rpdt — ftmtTth with £y = 1 and the Sharpe ratio
process k; = (o) "L (pe — rt)
Interpretation: &7(w) Arrow-Debreu value per probability unit in state w at
time T

Assume: p and o deterministic, o bounded, bounded away from zero,

invertible

Assume: r, 11 integrable, o, k square integrable over [0, T]
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Optimization Functional

» main target: J(0, T, 0, x0) = sup,ey J(0, T, u, o)
» functional J: J(0, T, u,xo) := E[F(0, T, u,xo)] —yVar(F(0, T, u, xp)) with
risk aversion parameter v > 0

Function F:

F(s,t,u,x) = a((Xe — ki)4 — ko) — aa( Xt — ko) +
—arky X < kq
= { (X — ki — ko) ki < Xe < ko
(X, — ko) + alke — k — ko) Xe > ko
where Xs = x, 0 < ko, ki < kp < oo with kg + k1 < k), 0 < ap < @ < 00
with & := a — ap (Note: 0 < & < «)
Notation: F(X7) instead of F(0, T, u,x) if u is clear
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Optimization Functional

> main target: J(0, T, 4, x0) = sup,g; J(0, T, u, xo)
» functional J: J(0, T, u,xo) := E[F(0, T, u,xo)] —yVar(F(0, T, u, xp)) with
risk aversion parameter v > 0

» Function F:

F(s,t,u,x) = a((Xe — ki)+ — ko) — aa( Xt — ka) +
—akg Xe < kg
= { (X — ki — ko) ki < Xe < ko
(X, — ko) + alke — k — ko) Xe > ko
where Xs; = x, 0 < kg, k1 < kp < oo with kg + ki < k), 0< an < a<
with & ;== a — a (Note: 0 < & < «)
> Notation: F(X7) instead of F(0, T, u,x) if u is clear
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Optimization Functional

> Function F:
—aky Xe < ki
F(s,t,u,x) = ¢ a(X; — k1 — ko) ki < Xe < ko
(Xt — ko) + alka — k1 — ko) X > ko

> non-protected contract: a =1, kg = 0, k; is the guarantee
> protected contract: o = 1, kg is the guarantee, k1 =0

Non-protected participating life insurance Protected participating life insurance
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Equivalent Problem

> Problem: non-linearity in Var(X) = E[X?] — (E[X])?

> Solution:
> value functional J: J(0, T, u,x0) := E[AF(0, T, u, x0) — vF(0, T, u, x0)%]
with A =1+ 2yE[F(0, T, 4, x0)] where i is the optimal strategy
> solve with A\ as a parameter

If i is an optimal strategy for J, it is also an optimal strategy for J.
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Optimal Terminal Wealth

The optimal terminal wealth X is given by:

Ao —yér *
kZ+W—E(k2—kl—ko) 57’6(0751]
)’ZT o k2 gT S (6‘576'5]
= Aa — y€r £ e
ko+k1+277 &7 € (a8, &5
0 else

where y is the Lagrangian multiplier which solves E[¢7X1(y)] = £oXo.

X7 is the optimal wealth of the portfolio, i.e., before distributing
insurer: F(X7) = (X1 — k1)1 — ko) — aa(X7 — ko) 4
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Optimization in the Black-Scholes
market

Optimal Terminal Wealth

The optimal terminal wealth X1 is given by:

Ad—yér  «
ko + DOTYST Qg p Kk :
2t = (ke — ki — ko) &7 € (0,¢]]
),% . k2 fT € (6‘5765]
T -— AOZ—_}/&-T ooy )
k0+k1+277 &r € (a8, &3]
0 else

where y is the Lagrangian multiplier which solves E[¢7X1(y)] = £oXo.

> X7 is the optimal wealth of the portfolio, i.e., before distributing
> insurer: F(X71) = a((XT — ki)y — ko) — (X7 — ko)
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Optimal Terminal Wealth

€= { A— 2'ya(k2 — k1 — ko) }
.Y 2’ya2k0
§i=—+
y
o L 2va s, A "
& =af — — [ 4/ max{ 0, (alko + ki) — aok2)? — a?ki + —(aki — azka) ¢ — dka |,
y il

& = max {0, min {dé, ff}} ,
&= aX  ya?(ke — ki)® — 2ya”ko(k2 — k1) + Aaky
2y yko ’

&5 := max {&é, min {aé, f;}} R

2
&= max{aé,f— 2ye” <\/k12 + ki <2ko + i) = k1> }
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Optimal Terminal Wealth

Non-protected participating life insurance Protected participating life insurance
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Optimal Terminal Wealth

Theorem

In particular, the Lagrange multiplier exists. Note that we suppress the
dependence on \ and y for the sake of simplicity in notation unless we state it
otherwise in some proofs. Moreover, let £* be as follows:

& ifeg >aé
£ =S¢ ifes =a,& > ak.
& ifg=af g =a

Then, it holds that £* > 0 and Xt > 0 for £ € (0,£*) and X1 =0 for € > £*.

(0,€5]U (A€, €3] U (o€, €3] = (0,£*], i.e., these three intervals are connected
Xt as a function of £ is continuous and non-increasing in (0,&") U (&*, 00)
There exists always a solution for A and y and an equation system which

can be numerically solved to determine them.
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Optimal Terminal Wealth
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dependence on \ and y for the sake of simplicity in notation unless we state it
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Then, it holds that £&* > 0 and Xr >0 for ¢ € (0,&*) and Xr=0 for & > &*.
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can be numerically solved to determine them.
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Optimal Terminal Wealth of the Insurer

Corollary

The optimal payoff of the insurer is given by:
A& — y&T *
o £7 € (0,¢]]
. ko — ki — k € (6€,&
it s ta k) Gretbal
2OV g (ad 8]
2y« 153
\—ako else
where §A, &, &5, and &3 are as before.
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Optimal Strategy

The optimal solution i is given by:

. Y
by = (atT) li-tht,
t
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Optimal Strategy

o J;T reds .
¢ (d (&1, 1))

A a
Vt=<k2+2 56-5("2—k1—k0))7_72
7 VUi ksl ds

U= rs—|| K. 2 s * 1 Gt
+ 5ozbeel ~CrmlIRE 6 (dy (67, 1)) - =y (ck (&], 1))
” VI lIss| ds

I (a0 - o (4 (a.1))

+hp—e———
’ Vi ksl ds

= J reds ~
—+ (ko + k1 + 27%) \/m (#’ (di(&3,1) —¢ (dl (a&, f)))

+ g pbiell ol (o (as (65,09 - © (a (o )

L (Ap (d2(&,1) — ¢ (d2 (aé’ t)))

VI ksl ds
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Optimal Strategy

A
2y
Y gl —CrmlnsPsg (g (5, 1))

2va2
+ kpe™ I 9% (o (dh (g5, 1) — & (e (€ ¢) )

+ (ko + ki + 27%) e i rds (4>(d1 (€,1) — & (dl (aé, t)))

~ 2’;"7£teff ~en=lml (o (d (65, 1)) - @ (o (ad. ).

X; = (kz 4 = g(b — k- ko)) e I 950 (dy (1, 1))

- 2
Inx—In&+ [, rs— Mds

VI ksl ds
2
Inx —Iné&: + T — 3l g T
da(x,t) = i Tft : 2 = di(x,t) - / ||ris || ds
VI sl ds t

d1(X, t) =
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Parametrization

> ko=0/ k =25 > d=
> ki =25/k =0 > r=0.02
> =T > 1 —0.08
b a=1
> o0=02
> Qo = 0.25
> =
> 4 =025 k=03
> oxo =4 > §=0.01
> T=10 > N = 1000
For a comparison:
- . X7 x>0 . .
> S-shaped utility function: U(x) = . 3 with A =2 and

different values for %
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comparison with results from expected utility of Lin et al. (2017)

different risk aversion levels

Optimal terminal wealth — Non—protected Optimal terminal wealth — Protected
o o Y
S - —— Mean-variance with gamma=0.5 S s —— Mean-variance with gamma=0.5.
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Mean-variance with gamma=0.125 Mean-variance with gamma=0.125
-~ Expected utiity with gamma=0.5 ! == Expected uslty with gamy 5
-~~~ Expected utility with gamma=0.25 ' -~~~ Expected utility with gami
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Optimal terminal wealth
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influence of participation rate ay
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» Non-protected participating life insurance contract

Wealth process with X_0 =4 Optimal strategy
o
= 7| — average of 1000 realizations < | — average of 1000 realizations
—— 10 5single realizations — 10ssingle realizations
o
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> comparably riskier strategies if economy evolves bad

> comparably safer strategies if economy evolves extremely good
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> Protected participating life insurance contract

Wealth process with X_0 =4 Optimal strategy
0
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> extreme strategy changes if final value is close to k;
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» Comparison between both participating contracts and a non-participation
contract

> X is chosen such that Xt is approximately equal in these cases

Wealth process — same expected value Optimal strategy
©
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> Comparison between both participating contracts with mean-variance and
expected utility

> X is chosen such that Xt is approximately equal in these cases

Wealth process — same expected value Optimal strategy
® ~
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Optimization in an Incomplete Market
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Setting adaptations

> wealth process: dX; = b(X;, us)dt + o(Xe, ur)dW; where b and o are
measurable functions which satisfy a uniform Lipschitz condition

> value functional: V/(t,x) = sup,cy(t x) Jt, T,u,x) =
SUPyeri(e.x) EINF(O, T, u,x0) — YF(0, T, u, x0)?] where U(t, x) denotes the
subset of U/ with processes starting at t and X; = x

> remember: A =1+ 2yE[F(0, T, d,x0)]
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If V€ CY2, then for every A\ > 0 the optimal value functional V is the solution
of the following SDE for all (t,x) € [0, T) x R:

4V (t x) —sup L*V(t,x) =0,
ueU

V( T’ X) = F(T’ T7 07 X)’

where the operator LY is defined as

£9v(,x) = blx, ) S (£,x) + 50 1) T (3, 0) T2 (8,%),

where tr denotes the trace of a matrix.
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Let the control space U be compact and the Hamiltonian H defined as usual,
ie.:

H : [0, T)xRxRxR—)R
H(t,x,p, M) := sup [b(x u) (t x)+ 10‘(X u)o ' (x, u)%(t,x)] .

If V is locally bounded on [0, T) x R, then for every A > 0 V is a viscosity
solution of the following Hamilton-Jacobi-Bellman (HJB) equation for
(t,x) € [0, T) xR:

dv dv d?v
_E(t,x) —H (t‘,X7 a(t,x) dx2 (t X)) = 0,

V(T,x)=F(T, T,0,x).

> can relax the assumption of U being compact
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Thank you for your attention!

Preprint available: https://arxiv.org/pdf/2407.11761
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