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Survey

Do you have life insurance contracts?
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What is the life insurance contract?

The probability of death is the key!
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Highly unpredictable mortality risk: Postive

(a) Life expectancy in Germany (b) Life expectancy in China

Medical technology innovations;

Preventive healthcare investment;

...
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Highly unpredictable mortality risk: Negative

War or terrorism;

Fatal accidents in everyday situations;

...

4 17



Highly unpredictable mortality risk: Negative

War or terrorism;

Fatal accidents in everyday situations;

...

4 17



Highly unpredictable mortality risk: Negative

War or terrorism;

Fatal accidents in everyday situations;

...

4 17



Highly unpredictable mortality risk: Negative

War or terrorism;

Fatal accidents in everyday situations;

...

4 17



How to deal with mortality risk?

It is challenging to predict the mortality risk, especially at the individual level!
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Risk

Ambiguity
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This paper

We provide the first analysis of the introduction of ambiguous mortality risk into a life
insurance contract;

▶ The policyholder faces multiple beliefs about the probability of death;
▶ She can buy life insurance to cover the death shock (income loss);

We assume that the utility is state-dependent, which relies on the survival or death
states;

We characterize the optimal life insurance demand under the smooth ambiguity
framework.
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Main findings

We show that the impact of ambiguous mortality risk on life insurance demand is
contingent upon the circumstances;

▶ We provide sufficient conditions of more ambiguity aversion, leading to more life insurance
demand;

▶ We also give the conditions that more ambiguity aversion less the life insurance demand;

We find that ambiguity aversion could explain the under-insurance puzzle.
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Contribution to the existing literature

Insurance demand and ambiguity:

[Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of
self-insurance and self-protection in the presence of ambiguity;

[Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts,
revealing that it can sometimes reduce the coverage of ambiguous loss risks;

[Peter and Ying, 2020], [Chi et al., 2022]...

The life insurance contract under ambiguity is lacking in the literature!

Explanation of under-insurance puzzle:

[Gottlieb, 2012]: Working-aged individuals with dependents should purchase life
insurance to financially protect their dependents in the event of an untimely death;

[Cutler et al., 2008], [Kunreuther et al., 2013]: behavioral biases, finanical constraints,
social norms, risk perception...

Our work:
Introduction of ambiguous mortality risk into the life insurance contract and explain the
under-insurance puzzle by ambiguity aversion!
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Static model in period [0, 1]

w0: an initial wealth;

π: the death probability of the insured during (0, 1];

I : the life insurance demand;
P (I): the corresponding insurance premium

▶ Expected value premium principle, i.e.,

P (I) = (1 + τ) · π · I

▶ τ = 0 ⇐⇒ actuarially fair; τ > 0 ⇐⇒ actuarially unfair;

y: an income before death;

V : the utility function for survival, V ′ > 0 and V ′′ < 0;

B: the utility function for bequest, B′ > 0 and B′′ < 0;

▶ B is a linear transformation of the “living" utility function V , i.e., B(x) = kV (x) + c, for
some k > 0 and c ∈ R for all x ≥ 0;

▶ k is interpreted as the strength of bequest motive.
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Classical life insurance contract

The probability of death π is a known constant!

The expected utility for the insured with the life insurance contract:

J(I) := (1− π)V (w0 + y − P (I)) + πB(w0 + I − P (I)).

The insured maximizes her expected utility by choosing the insurance demand I ≥ 0

max
I≥0

J(I).

Proposition 1 (No ambiguity)

Let τ ≥ 0 and (1 + τ)π < 1. When k ≤ (1+τ)(1−π)V ′(w0+y)
(1−(1+τ)π)V ′(w0)

, the optimal contract I∗ = 0. If
(1+τ)(1−π)V ′(w0+y)
(1−(1+τ)π)V ′(w0)

< k < (1+τ)(1−π)
1−(1+τ)π , the optimal contract 0 < I∗ < y. If k > (1+τ)(1−π)

1−(1+τ)π ,

the optimal contract I∗ > y. In particular, I∗ = y if and only if k = (1+τ)(1−π)
1−(1+τ)π .
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max
I≥0

J(I).

Proposition 1 (No ambiguity)
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Smooth ambiguity model

Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent
experimental findings;

Models of ambiguity aversion: The maxmin model ([Gilboa and Schmeidler, 1989]),
α-maxmin model ([Ghirardato et al., 2004]) and others...

▶ The random variable Π may take only one of the values π1, ..., πn with
P(Π = πi) = qi, qi ≥ 0,

∑n
i=1 qi = 1;

▶ u is a utility function;

The smooth ambiguity model ([Klibanoff et al., 2005]):

n∑
i=1

qiϕ

(
Eπi [u(Π)]

)
,

where Eπi denotes the conditional expectation, given Π = πi.
The function ϕ characterizes the individual’s attitude towards ambiguity:
▶ An increasing and linear ϕ: ambiguity neutrality;
▶ An increasing and concave ϕ: ambiguity aversion.
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Life insurance contract under smooth ambiguity (I)

The probability of death Π is a random variable!

Π with n possible outcomes πi ∈ (0, 1), i = 1, .., n, with known probabilities
(q1, ..., qn) > 0,

∑n
i=1 qi = 1.

The insurer has information about the insured’s distribution of uncertain mortality:
▶ Expected value premium principle, i.e.,

P (I) = (1 + τ) · π̂ · I,

where π̂ := EF [Π] =
∑n

i=1 qiπi.
The smooth ambiguity objective for the insured with the life insurance contract:

W (I) :=

n∑
i=1

qiϕ

(
(1− πi)V (w0 + y − P (I)) + πiB(w0 + I − P (I))

)
:= EF [ϕ(U(Π, I))],

where EF is the expectation under the distribution F , i.e., P(Π = πi) = qi and

U(Π, I) := (1−Π)V (w0 + y − P (I)) + ΠB(w0 + I − P (I)).
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Life insurance contract under smooth ambiguity (II)

The insured maximizes her expected utility by choosing the insurance demand I ≥ 0

max
I≥0

W (I).

Proposition 2 (Ambiguity neutrality)

Let τ ≥ 0, ϕ(x) = x and (1 + τ)π̂ < 1. When k ≤ (1+τ)(1−π̂)V ′(w0+y)
(1−(1+τ)π̂)V ′(w0)

, the optimal contract

I∗neutral = 0. When (1+τ)(1−π̂)V ′(w0+y)
(1−(1+τ)π̂)V ′(w0)

< k < (1+τ)(1−π̂)
1−(1+τ)π̂ , the optimal contract

0 < I∗neutral < y. When k > (1+τ)(1−π̂)
1−(1+τ)π̂ , the optimal contract I∗neutral > y. In particular, we

have I∗neutral = y if and only if k = (1+τ)(1−π̂)
1−(1+τ)π̂ .
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Comparison ambiguity neutrality with ambiguity aversion (I)

I∗ϕ: the optimal insurance demand with concave ϕ (under ambiguity-aversion).

Proposition 3

Let (1 + τ)π̂ < 1. The optimal life insurance demand for a risk-and-ambiguity-averse insured
is higher in the presence of ambiguity than in its absence, i.e., I∗ϕ > I∗neutral if and only if
∂U(Π,I∗neutral)

∂Π < 0. Moreover, I∗ϕ < I∗neutral if and only if ∂U(Π,I∗neutral)
∂Π > 0. In particular,

I∗ϕ = I∗neutral if and only if ∂U(Π,I∗neutral)
∂Π = 0, where

∂U(Π,I∗neutral)
∂Π = −V (w0 + y − P (I∗neutral)) +B(w0 + I∗neutral − P (I∗neutral)).
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Comparison ambiguity neutrality with ambiguity aversion (II)

Example 1

Let (1 + τ)π̂ < 1 with τ ≥ 0. When V = B, we have I∗ϕ ≥ I∗neutral. If further requires τ = 0,
we have I∗ϕ = I∗neutral = y.

Example 2

Let (1 + τ)π̂ < 1 with τ > 0. When k > (1+τ)(1−π̂)
1−(1+τ)π̂ , c ≥ 0 and V (x) > 0 for all x ≥ 0, we

have I∗ϕ < I∗neutral.
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Greater ambiguity aversion

Following [Klibanoff et al., 2005], we characterize the increased ambiguity aversion of
an insured through R(ϕ), where R is an increasing and concave function;

I∗Rϕ denote the optimal insurance demand with concave R(ϕ).

Proposition 4 (Greater ambiguity aversion)

Let (1 + τ)π̂ < 1. In the presence of ambiguity, optimal life insurance demand for a
risk-and-ambiguity averse insured increases with greater ambiguity aversion, i.e., I∗Rϕ > I∗ϕ if
∂U(Π,I∗ϕ)

∂Π < 0. Moreover, I∗Rϕ < I∗ϕ if
∂U(Π,I∗ϕ)

∂Π > 0. In particular, we have I∗Rϕ = I∗ϕ if
∂U(Π,I∗ϕ)

∂Π = 0, where
∂U(Π,I∗ϕ)

∂Π = −V (w0 + y − P (I∗ϕ)) +B(w0 + I∗ϕ − P (I∗ϕ)).
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“Snacks" for coffee break

We consider a risk- and ambiguity-averse policyholder who is ambiguous about her
mortality risk;

We show that, under certain conditions, ambiguity aversion increases the demand for
life insurance;

We indicate that the ambiguity aversion may have the counterintuitive effect of
reducing the optimal life insurance demand;

We provide an explanation of the under-insurance puzzle by ambiguity aversion.
Outlook:
▶ Incorporating other risks: non-performance risk...
▶ Considering other frameworks: multi-period model; dynamic model...
▶ Other insurance contracts: long-term care insurance; climate-related insurance...
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Thank you for your attention!

Preprint is coming soon...
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