LIFE INSURANCE DEMAND UNDER AMBIGUOUS Mortality Risk

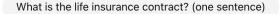
An Chen¹ & Shihao Zhu¹

¹ Institute of Insurance Science, Ulm University

THE 6TH FUDAN-ULM SYMPOSIUM ON FINANCE AND INSURANCE

September 05-06, 2024

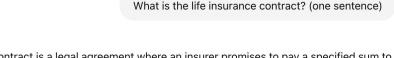
Do you have life insurance contracts?



A life insurance contract is a legal agreement where an insurer promises to pay a specified sum to a beneficiary upon the insured's death, in exchange for periodic premium payments by the policyholder.

● ① ℃ 凸 ⑦ ペ~

\$

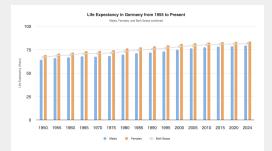


A life insurance contract is a legal agreement where an insurer promises to pay a specified sum to a beneficiary upon the insured's death, in exchange for periodic premium payments by the policyholder.

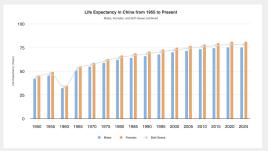
言われるる々々

The probability of death is the key!

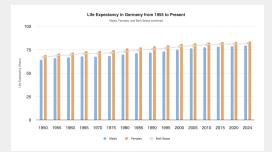
\$

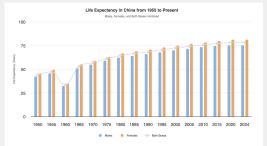


(a) Life expectancy in Germany



(b) Life expectancy in China

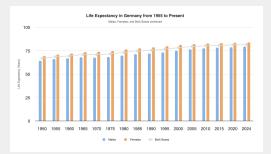




(a) Life expectancy in Germany

(b) Life expectancy in China

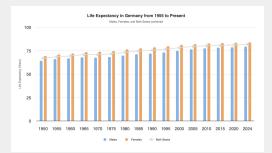
Medical technology innovations;

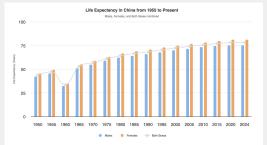


(a) Life expectancy in Germany

(b) Life expectancy in China

- Medical technology innovations;
- Preventive healthcare investment;





(a) Life expectancy in Germany

(b) Life expectancy in China

- Medical technology innovations;
- Preventive healthcare investment;

....

■ War or terrorism;

- War or terrorism;
- Fatal accidents in everyday situations;

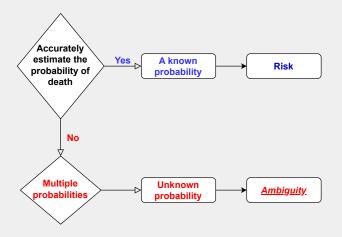
- War or terrorism;
- Fatal accidents in everyday situations;

...

It is challenging to predict the mortality risk, especially at the individual level!

How to deal with mortality risk?

It is challenging to predict the mortality risk, especially at the individual level!



 We provide the *first analysis* of the introduction of ambiguous mortality risk into a life insurance contract;

- We provide the *first analysis* of the introduction of ambiguous mortality risk into a life insurance contract;
 - The policyholder faces multiple beliefs about the probability of death;

- We provide the *first analysis* of the introduction of ambiguous mortality risk into a life insurance contract;
 - The policyholder faces multiple beliefs about the probability of death;
 - She can buy life insurance to cover the death shock (income loss);

- We provide the *first analysis* of the introduction of ambiguous mortality risk into a life insurance contract;
 - ► The policyholder faces multiple beliefs about the probability of death;
 - She can buy life insurance to cover the death shock (income loss);
- We assume that the utility is state-dependent, which relies on the **survival** or **death** states;

- We provide the *first analysis* of the introduction of ambiguous mortality risk into a life insurance contract;
 - The policyholder faces multiple beliefs about the probability of death;
 - She can buy life insurance to cover the death shock (income loss);
- We assume that the utility is state-dependent, which relies on the **survival** or **death** states;
- We characterize the optimal life insurance demand under the smooth ambiguity framework.

We show that the impact of ambiguous mortality risk on life insurance demand is contingent upon the circumstances;

- We show that the impact of ambiguous mortality risk on life insurance demand is contingent upon the circumstances;
 - We provide sufficient conditions of more ambiguity aversion, leading to more life insurance demand;

- We show that the impact of ambiguous mortality risk on life insurance demand is contingent upon the circumstances;
 - We provide sufficient conditions of more ambiguity aversion, leading to more life insurance demand;
 - We also give the conditions that more ambiguity aversion less the life insurance demand;

- We show that the impact of ambiguous mortality risk on life insurance demand is contingent upon the circumstances;
 - We provide sufficient conditions of more ambiguity aversion, leading to more life insurance demand;
 - We also give the conditions that more ambiguity aversion less the life insurance demand;
- We find that ambiguity aversion could explain the under-insurance puzzle.

 [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is **lacking** in the literature!

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is **lacking** in the literature!

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is lacking in the literature!

Explanation of under-insurance puzzle:

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is **lacking** in the literature!

Explanation of under-insurance puzzle:

 [Gottlieb, 2012]: Working-aged individuals with dependents should purchase life insurance to financially protect their dependents in the event of an untimely death;

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is **lacking** in the literature!

Explanation of under-insurance puzzle:

- [Gottlieb, 2012]: Working-aged individuals with dependents **should purchase life insurance** to financially protect their dependents in the event of an untimely death;
- [Cutler et al., 2008], [Kunreuther et al., 2013]: behavioral biases, finanical constraints, social norms, risk perception...

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is **lacking** in the literature!

Explanation of under-insurance puzzle:

- [Gottlieb, 2012]: Working-aged individuals with dependents **should purchase life insurance** to financially protect their dependents in the event of an untimely death;
- [Cutler et al., 2008], [Kunreuther et al., 2013]: behavioral biases, finanical constraints, social norms, risk perception...

- [Snow, 2011] finds ambiguity-averse individuals tend to increase their levels of self-insurance and self-protection in the presence of ambiguity;
- [Gollier, 2014] explores the impact of ambiguity aversion on optimal insurance contracts, revealing that it can **sometimes reduce** the coverage of ambiguous loss risks;
- [Peter and Ying, 2020], [Chi et al., 2022]...
- The life insurance contract under ambiguity is **lacking** in the literature!

Explanation of under-insurance puzzle:

- [Gottlieb, 2012]: Working-aged individuals with dependents should purchase life insurance to financially protect their dependents in the event of an untimely death;
- [Cutler et al., 2008], [Kunreuther et al., 2013]: behavioral biases, finanical constraints, social norms, risk perception...

Our work:

Introduction of ambiguous mortality risk into the life insurance contract and explain the under-insurance puzzle by ambiguity aversion! • w_0 : an initial wealth;

Static model in period [0,1]

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- $\blacksquare \ P(I)$: the corresponding insurance premium

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- $\blacksquare \ P(I)$: the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- P(I): the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- P(I): the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

• $\tau = 0 \iff$ actuarially fair; $\tau > 0 \iff$ actuarially unfair;

■ *y*: an income before death;

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- P(I): the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

- $\tau = 0 \iff$ actuarially fair; $\tau > 0 \iff$ actuarially unfair;
- *y*: an income before death;
- *V*: the utility function for survival, V' > 0 and V'' < 0;

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- P(I): the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

- *y*: an income before death;
- *V*: the utility function for survival, V' > 0 and V'' < 0;
- *B*: the utility function for bequest, B' > 0 and B'' < 0;

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- P(I): the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

- *y*: an income before death;
- *V*: the utility function for survival, V' > 0 and V'' < 0;
- *B*: the utility function for bequest, B' > 0 and B'' < 0;
 - ▶ *B* is a linear transformation of the "living" utility function *V*, i.e., $B(x) = \mathbf{k}V(x) + c$, for some k > 0 and $c \in \mathbb{R}$ for all $x \ge 0$;

- w_0 : an initial wealth;
- π : the death probability of the insured during (0, 1];
- *I*: the life insurance demand;
- P(I): the corresponding insurance premium
 - Expected value premium principle, i.e.,

 $P(I) = (1+\tau) \cdot \pi \cdot I$

- *y*: an income before death;
- *V*: the utility function for survival, V' > 0 and V'' < 0;
- *B*: the utility function for bequest, B' > 0 and B'' < 0;
 - ▶ *B* is a linear transformation of the "living" utility function *V*, i.e., $B(x) = \mathbf{k}V(x) + c$, for some k > 0 and $c \in \mathbb{R}$ for all $x \ge 0$;
 - k is interpreted as the strength of bequest motive.

The expected utility for the insured with the life insurance contract:

 $J(I) := (1 - \pi)V(w_0 + y - P(I)) + \pi B(w_0 + I - P(I)).$

• The expected utility for the insured with the life insurance contract:

 $J(I) := (1 - \pi)V(w_0 + y - P(I)) + \pi B(w_0 + I - P(I)).$

• The insured maximizes her expected utility by choosing the insurance demand $I \ge 0$

 $\max_{I \ge 0} J(I).$

• The expected utility for the insured with the life insurance contract:

 $J(I) := (1 - \pi)V(w_0 + y - P(I)) + \pi B(w_0 + I - P(I)).$

• The insured maximizes her expected utility by choosing the insurance demand $I \ge 0$

 $\max_{I \ge 0} J(I).$

The expected utility for the insured with the life insurance contract:

 $J(I) := (1 - \pi)V(w_0 + y - P(I)) + \pi B(w_0 + I - P(I)).$

 \blacksquare The insured maximizes her expected utility by choosing the insurance demand $I \geq 0$

 $\max_{I \ge 0} J(I).$

Proposition 1 (No ambiguity)

Let $\tau \geq 0$ and $(1 + \tau)\pi < 1$. When $k \leq \frac{(1+\tau)(1-\pi)V'(w_0+y)}{(1-(1+\tau)\pi)V'(w_0)}$, the optimal contract $I^* = 0$. If $\frac{(1+\tau)(1-\pi)V'(w_0+y)}{(1-(1+\tau)\pi)V'(w_0)} < k < \frac{(1+\tau)(1-\pi)}{1-(1+\tau)\pi}$, the optimal contract $0 < I^* < y$. If $k > \frac{(1+\tau)(1-\pi)}{1-(1+\tau)\pi}$, the optimal contract $I^* > y$. In particular, $I^* = y$ if and only if $k = \frac{(1+\tau)(1-\pi)}{1-(1+\tau)\pi}$.

 Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent experimental findings;

- Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent experimental findings;
- Models of ambiguity aversion: The maxmin model ([Gilboa and Schmeidler, 1989]), α -maxmin model ([Ghirardato et al., 2004]) and others...

- Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent experimental findings;
- Models of ambiguity aversion: The maxmin model ([Gilboa and Schmeidler, 1989]), α -maxmin model ([Ghirardato et al., 2004]) and others...
 - The random variable Π may take only one of the values $\pi_1, ..., \pi_n$ with $\mathbb{P}(\Pi = \pi_i) = q_i, q_i \ge 0, \sum_{i=1}^n q_i = 1;$

- Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent experimental findings;
- Models of ambiguity aversion: The maxmin model ([Gilboa and Schmeidler, 1989]), α -maxmin model ([Ghirardato et al., 2004]) and others...
 - The random variable Π may take only one of the values $\pi_1, ..., \pi_n$ with $\mathbb{P}(\Pi = \pi_i) = q_i, q_i \ge 0, \sum_{i=1}^n q_i = 1;$
 - \blacktriangleright *u* is a utility function;

- Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent experimental findings;
- Models of ambiguity aversion: The maxmin model ([Gilboa and Schmeidler, 1989]), α -maxmin model ([Ghirardato et al., 2004]) and others...
 - The random variable Π may take only one of the values $\pi_1, ..., \pi_n$ with $\mathbb{P}(\Pi = \pi_i) = q_i, q_i \ge 0, \sum_{i=1}^n q_i = 1;$
 - \blacktriangleright *u* is a utility function;
- The smooth ambiguity model ([Klibanoff et al., 2005]):

$$\sum_{i=1}^{n} q_i \phi \bigg(\mathbb{E}_{\pi_i}[u(\Pi)] \bigg),$$

where \mathbb{E}_{π_i} denotes the conditional expectation, given $\Pi = \pi_i$.

- Ambiguity aversion: documented by [Ellsberg, 1961] and by many subsequent experimental findings;
- Models of ambiguity aversion: The maxmin model ([Gilboa and Schmeidler, 1989]), α -maxmin model ([Ghirardato et al., 2004]) and others...
 - The random variable Π may take only one of the values $\pi_1, ..., \pi_n$ with $\mathbb{P}(\Pi = \pi_i) = q_i, q_i \ge 0, \sum_{i=1}^n q_i = 1;$
 - ► *u* is a utility function;
- The smooth ambiguity model ([Klibanoff et al., 2005]):

$$\sum_{i=1}^{n} q_i \phi \bigg(\mathbb{E}_{\pi_i}[u(\Pi)] \bigg),$$

where \mathbb{E}_{π_i} denotes the conditional expectation, given $\Pi = \pi_i$.

- **The function** ϕ characterizes the individual's attitude towards ambiguity:
 - An increasing and linear ϕ : ambiguity neutrality;
 - An increasing and concave ϕ : ambiguity aversion.

LIFE INSURANCE CONTRACT UNDER SMOOTH AMBIGUITY (I)

The probability of death Π is a random variable!

■ Π with *n* possible outcomes $\pi_i \in (0, 1), i = 1, ..., n$, with known probabilities $(q_1, ..., q_n) > 0, \sum_{i=1}^n q_i = 1.$

LIFE INSURANCE CONTRACT UNDER SMOOTH AMBIGUITY (I)

The probability of death Π is a random variable!

- Π with *n* possible outcomes $\pi_i \in (0, 1), i = 1, ..., n$, with known probabilities $(q_1, ..., q_n) > 0, \sum_{i=1}^n q_i = 1.$
- The insurer has information about the insured's **distribution** of uncertain mortality:
 - Expected value premium principle, i.e.,

$$P(I) = (1+\tau) \cdot \widehat{\pi} \cdot I,$$

where $\widehat{\pi} := \mathbb{E}_F[\Pi] = \sum_{i=1}^n q_i \pi_i$.

LIFE INSURANCE CONTRACT UNDER SMOOTH AMBIGUITY (I)

The probability of death Π is a random variable!

- If with *n* possible outcomes $\pi_i \in (0, 1), i = 1, ..., n$, with known probabilities $(q_1, ..., q_n) > 0, \sum_{i=1}^n q_i = 1.$
- The insurer has information about the insured's distribution of uncertain mortality:
 - Expected value premium principle, i.e.,

$$P(I) = (1+\tau) \cdot \widehat{\pi} \cdot I,$$

where $\widehat{\pi} := \mathbb{E}_F[\Pi] = \sum_{i=1}^n q_i \pi_i$.

The smooth ambiguity objective for the insured with the life insurance contract:

$$W(I) := \sum_{i=1}^{n} q_i \phi \left((1 - \pi_i) V(w_0 + y - P(I)) + \pi_i B(w_0 + I - P(I)) \right)$$

:= $\mathbb{E}_F[\phi(U(\Pi, I))],$

where \mathbb{E}_F is the expectation under the distribution F, i.e., $\mathbb{P}(\Pi = \pi_i) = q_i$ and $U(\Pi, I) := (1 - \Pi)V(w_0 + y - P(I)) + \Pi B(w_0 + I - P(I)).$

\blacksquare The insured maximizes her expected utility by choosing the insurance demand $I \geq 0$

 $\max_{I \ge 0} W(I).$

\blacksquare The insured maximizes her expected utility by choosing the insurance demand $I \geq 0$

 $\max_{I\geq 0} W(I).$

Proposition 2 (Ambiguity neutrality)

Let $\tau \ge 0$, $\phi(x) = x$ and $(1 + \tau)\widehat{\pi} < 1$. When $k \le \frac{(1+\tau)(1-\widehat{\pi})V'(w_0+y)}{(1-(1+\tau)\widehat{\pi})V'(w_0)}$, the optimal contract $I_{neutral}^* = 0$. When $\frac{(1+\tau)(1-\widehat{\pi})V'(w_0+y)}{(1-(1+\tau)\widehat{\pi})V'(w_0)} < k < \frac{(1+\tau)(1-\widehat{\pi})}{1-(1+\tau)\widehat{\pi}}$, the optimal contract $0 < I_{neutral}^* < y$. When $k > \frac{(1+\tau)(1-\widehat{\pi})}{1-(1+\tau)\widehat{\pi}}$, the optimal contract $I_{neutral}^* > y$. In particular, we have $I_{neutral}^* = y$ if and only if $k = \frac{(1+\tau)(1-\widehat{\pi})}{1-(1+\tau)\widehat{\pi}}$.

• I_{ϕ}^* : the optimal insurance demand with concave ϕ (under ambiguity-aversion).

• I_{ϕ}^* : the optimal insurance demand with concave ϕ (under ambiguity-aversion).

Proposition 3

Let $(1 + \tau)\hat{\pi} < 1$. The optimal life insurance demand for a risk-and-ambiguity-averse insured is higher in the presence of ambiguity than in its absence, i.e., $I_{\phi}^* > I_{neutral}^*$ if and only if $\frac{\partial U(\Pi, I_{neutral}^*)}{\partial \Pi} < 0$. Moreover, $I_{\phi}^* < I_{neutral}^*$ if and only if $\frac{\partial U(\Pi, I_{neutral}^*)}{\partial \Pi} > 0$. In particular, $I_{\phi}^* = I_{neutral}^*$ if and only if $\frac{\partial U(\Pi, I_{neutral}^*)}{\partial \Pi} = 0$, where $\frac{\partial U(\Pi, I_{neutral}^*)}{\partial \Pi} = -V(w_0 + y - P(I_{neutral}^*)) + B(w_0 + I_{neutral}^* - P(I_{neutral}^*))$.

Example 1

Let $(1 + \tau)\hat{\pi} < 1$ with $\tau \ge 0$. When V = B, we have $I_{\phi}^* \ge I_{neutral}^*$. If further requires $\tau = 0$, we have $I_{\phi}^* = I_{neutral}^* = y$.

Example 1

Let $(1 + \tau)\hat{\pi} < 1$ with $\tau \ge 0$. When V = B, we have $I_{\phi}^* \ge I_{neutral}^*$. If further requires $\tau = 0$, we have $I_{\phi}^* = I_{neutral}^* = y$.

Example 2

Let $(1 + \tau)\widehat{\pi} < 1$ with $\tau > 0$. When $k > \frac{(1+\tau)(1-\widehat{\pi})}{1-(1+\tau)\widehat{\pi}}, c \ge 0$ and V(x) > 0 for all $x \ge 0$, we have $I_{\phi}^* < I_{neutral}^*$.

 Following [Klibanoff et al., 2005], we characterize the increased ambiguity aversion of an insured through R(φ), where R is an increasing and concave function;

16

- Following [Klibanoff et al., 2005], we characterize the increased ambiguity aversion of an insured through R(φ), where R is an increasing and concave function;
- $I_{R\phi}^*$ denote the optimal insurance demand with concave $R(\phi)$.

- Following [Klibanoff et al., 2005], we characterize the increased ambiguity aversion of an insured through R(φ), where R is an increasing and concave function;
- $I_{R\phi}^*$ denote the optimal insurance demand with concave $R(\phi)$.

- Following [Klibanoff et al., 2005], we characterize the increased ambiguity aversion of an insured through R(φ), where R is an increasing and concave function;
- $I_{R\phi}^*$ denote the optimal insurance demand with concave $R(\phi)$.

Proposition 4 (Greater ambiguity aversion)

Let $(1 + \tau)\hat{\pi} < 1$. In the presence of ambiguity, optimal life insurance demand for a risk-and-ambiguity averse insured increases with greater ambiguity aversion, i.e., $I_{R\phi}^* > I_{\phi}^*$ if $\frac{\partial U(\Pi, I_{\phi}^*)}{\partial \Pi} < 0$. Moreover, $I_{R\phi}^* < I_{\phi}^*$ if $\frac{\partial U(\Pi, I_{\phi}^*)}{\partial \Pi} > 0$. In particular, we have $I_{R\phi}^* = I_{\phi}^*$ if $\frac{\partial U(\Pi, I_{\phi}^*)}{\partial \Pi} = 0$, where $\frac{\partial U(\Pi, I_{\phi}^*)}{\partial \Pi} = -V(w_0 + y - P(I_{\phi}^*)) + B(w_0 + I_{\phi}^* - P(I_{\phi}^*))$.

16

 We consider a risk- and ambiguity-averse policyholder who is ambiguous about her mortality risk;

- We consider a risk- and ambiguity-averse policyholder who is ambiguous about her mortality risk;
- We show that, under certain conditions, ambiguity aversion increases the demand for life insurance;

- We consider a risk- and ambiguity-averse policyholder who is ambiguous about her mortality risk;
- We show that, under certain conditions, ambiguity aversion increases the demand for life insurance;
- We indicate that the ambiguity aversion may have the counterintuitive effect of reducing the optimal life insurance demand;

- We consider a risk- and ambiguity-averse policyholder who is ambiguous about her mortality risk;
- We show that, under certain conditions, ambiguity aversion increases the demand for life insurance;
- We indicate that the ambiguity aversion may have the counterintuitive effect of reducing the optimal life insurance demand;
- We provide an explanation of the under-insurance puzzle by ambiguity aversion.

- We consider a risk- and ambiguity-averse policyholder who is ambiguous about her mortality risk;
- We show that, under certain conditions, ambiguity aversion increases the demand for life insurance;
- We indicate that the ambiguity aversion may have the counterintuitive effect of reducing the optimal life insurance demand;
- We provide an explanation of the under-insurance puzzle by ambiguity aversion.
- Outlook:
 - Incorporating other risks: non-performance risk...
 - Considering other **frameworks**: multi-period model; dynamic model...
 - Other **insurance contracts**: long-term care insurance; climate-related insurance...

THANK YOU FOR YOUR ATTENTION!

PREPRINT IS COMING SOON...

References

- CHI, Y., PETER, R., AND WEI, W. (2022).
 Revisiting optimal insurance design under smooth ambiguity aversion. Available at SSRN 4167175.
- CUTLER, D. M., FINKELSTEIN, A., AND MCGARRY, K. (2008).
 PREFERENCE HETEROGENEITY AND INSURANCE MARKETS: EXPLAINING A PUZZLE OF INSURANCE. American Economic Review, 98(2):157–162.
- **ELLSBERG**, D. (1961).

RISK, AMBIGUITY, AND THE SAVAGE AXIOMS. *The Quarterly Journal of Economics*, 75(4):643–669.

GHIRARDATO, P., MACCHERONI, F., AND MARINACCI, M. (2004). **DIFFERENTIATING AMBIGUITY AND AMBIGUITY ATTITUDE.** *Journal of Economic Theory*, 118(2):133–173.

GILBOA, I. AND SCHMEIDLER, D. (1989). MAXMIN EXPECTED UTILITY WITH NON-UNIQUE PRIOR. Journal of Mathematical Economics, 18(2):141–153.

REFERENCES

GOLLIER, C. (2014). **OPTIMAL INSURANCE DESIGN OF AMBIGUOUS RISKS.** Economic Theory, 57:555-576.

GOTTLIEB, D. (2012).

PROSPECT THEORY, LIFE INSURANCE, AND ANNUITIES. The Wharton School Research Paper, (44).

KLIBANOFF, P., MARINACCI, M., AND MUKERII, S. (2005). A SMOOTH MODEL OF DECISION MAKING UNDER AMBIGUITY. Econometrica, 73(6):1849-1892.

KUNREUTHER, H. C., PAULY, M. V., AND MCMORROW, S. (2013). INSURANCE AND BEHAVIORAL ECONOMICS: IMPROVING DECISIONS IN THE MOST MISUNDERSTOOD INDUSTRY.

Cambridge University Press.

Peter, R. and Ying, J. (2020). DO YOU TRUST YOUR INSURER? AMBIGUITY ABOUT CONTRACT NONPERFORMANCE AND OPTIMAL **INSURANCE DEMAND.** Journal of Economic Behavior & Organization, 180:938–954.

Snow, A. (2011).

AMBIGUITY AVERSION AND THE PROPENSITIES FOR SELF-INSURANCE AND SELF-PROTECTION. *Journal of Risk and Uncertainty*, 42:27–43.