
5th European 

Congress of Actuaries   

www.eca2024.org 

Jaume Belles-Sampera, PhD. Riskcenter IREA (UB), Grupo Catalana Occidente, S.A.

A Novel Approach to xAI Techniques: Improving 
Accuracy and Interpretability of Tree-Based Models



www.eca2024.org 2ECA 2024

About the speaker

▪ Jaume Belles Sampera – Director of the Actuarial Function for Life, 
Health and Burial Businesses. GCO 
Jaume holds a MsC in Mathematics and a PhD in Business from the University of 
Barcelona. He has a broad experience in the Spanish insurance and financial sectors. In 
2015 he joined GCO to take part in the Actuarial Function, where he is responsible for 
the Life, Health and Burial Businesses since late 2020. He is a part-time researcher of 
the Riskcenter IREA (UB).

▪ GCO (Grupo Catalana Occidente) is one of the leaders in the Spanish insurance sector 
and credit insurance in the world, as well as the leader in the funeral sector in the 
Iberian Peninsula. With constant growth and extensive implementation, it has more 
than 8,500 employees and it is present in more than 50 countries.
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Starting point: our research goals
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▪ Obtaining insights on risks linked to the behaviour of policyholders in universal 

life policies

▪ Exploring how to explain the classifying process behind a non-classical 

predictive model

▪ Can we contribute to enhance xAI?

ECA 2024
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Explainable AI – Model Agnostic
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Tools for global explanations

• Feature Importance (FI)
• Partial Dependence 

Plots (PDP) with H-
Statistic

• Accumulated Local 
Effects (ALE)

Tools for local explanations

• Shapley Additive 
Explanations (SHAP)

Following the classification proposed 
in Adadi and Berrada (2018)
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Our main contribution
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Tools for global explanations

• Feature Importance (FI)
• Partial Dependence 

Plots (PDP) with H-
Statistic

• Accumulated Local 
Effects (ALE)

Tools for local explanations

• Shapley Additive 
Explanations (SHAP)

• KNN based on Shapley 
values

Inspired by Bussmann et al. (2020) 
and using Kohonen Neural Networks 
(KNN)
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The Application
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▪ Behavioral risk:  paid-up risk

▪ Data:

▪ Response variable: one-year ahead paid-up probability

▪ Predictive models: logistic regression | random forest | XGBoost

ECA 2024

The database contains 7,886 UL policies that 
were actively paying premiums in 2018 and 
remained within the portfolio throughout the 
entirety of 2019.

Paid-up: 1,665 policies 
(21.11%)
Active: 6,221 policies 
(78.89%)
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Explanatory variables
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Categorical variables

gen factor Gender of the insured (1: Female, 0: Male)

unl factor Unit-linked product (1: Yes, 0: No)

tax factor Product with tax advantages (1: Yes, 0: No)

fee factor Product with active surrender fee (1: Yes, 0: No)

rate factor Product with fixed guaranteed interest rate (1: Yes, 0: No)

Continuous variables

cap numeric Additional sum insured in case of death

res numeric Current value of the fund

prem numeric Total annual premium

loy numeric Number of years the policy has been in force

age numeric Current age of the insured

rem numeric Years remaining until final premium as per contract
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Steps
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Preparatory 
phase

Fitting 
models

Accuracy 
analysis

Interpreting 
the selected 
model

Improving 
explainability

Conclusions
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Improving explainability

9ECA 2024

First approach to 
transform a local 
explanatory tool 
(SHAP) into a 
global one
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Improving explainability
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Extreme prediction values 
(below 0.3 and above 0.7)

70% of total observations
92% are classified correctly

Prediction values close to the threshold of 0.5 
(between 0.3 and 0.7)

30% of total observations
68% are classified correctly

KNN based on 
Shapley values
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Improving explainability
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Extreme prediction values 
(below 0.3 and above 0.7)

70% of total observations
92% are classified correctly

Predicted as Active cases:
• H1: surrender fee products with high premiums 

and reserves.
• H3 and H4: non surrender fee products with low 

premiums and reserves.

Predicted as Paid-up cases:
• H2: surrender fee products with low premiums 

and reserves.
• H5: non surrender fee products with high 

premiums and reserves.
• H6: both surrender and non surrender fee 

products with lowest premiums and lowest 
reserves.
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Improving explainability
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Prediction values close to the threshold of 0.5 
(between 0.3 and 0.7)

30% of total observations
68% are classified correctly

Predicted as Active cases:
• h1 (H3): non surrender fee products with low premiums 

and reserves, but the proportion of products offering tax 
benefits is higher than that of unit-linked products. 

• h3 (H4): non surrender fee products with low premiums 
and reserves, but with higher reserves than in H4 
policies.

• h5 (H5): non surrender fee products with high premiums 
and reserves, mainly unit-linked products.

Predicted as Paid-up cases:
• h2 and h4 (H5): non surrender fee products with high 

premiums and reserves, but lower than those of H5.
• h6 (H1): surrender fee products with probabilities that 

are very close to 0.5 and predicted in almost equal 
proportions to be Active or Paid-up.
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Conclusions
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▪ In the analysed portfolio, the paid-up probability depends mainly on the 

interaction between:

o the inclusion (or not) of a surrender fee and 

o the values of policy premiums and reserves.

▪ When a surrender fee is included in the product (to mitigate its lapse risk), the 

paid-up risk either increases (for policyholders with low premiums and 

reserves) or decreases (for policyholders with high premiums and reserve). 

▪ May risk managers rethink the rules governing surrender fees?

ECA 2024
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Link
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▪ This work is part of the PhD dissertation (in progress) of Mr. David Anaya. It is a 

joint work with Professor Lluís Bermúdez and myself (his PhD supervisors).

▪ The opinions expressed in this work are those of the authors and do not 

necessarily represent those of GCO.

▪ You can find the full paper clicking on the link below (open access)

Explainable AI for paid-up risk management in life insurance products

ECA 2024

https://www.sciencedirect.com/science/article/pii/S1544612323006141
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Contact Details:
belles.sampera@ub.edu
jaume.belles@gco.com

Thank you
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