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Motivation and introduction



Lifetime pension pools

Lifetime pension pools arrangements allow retiring
individuals to convert a lump sum into income for life.
It does not guarantee a specific level of income; instead, the
pension payable varies with the investment and mortality
experience of the group.
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Same same, but different
Very broad definition that matches different designs:

Group self-annuitization schemes (e.g., Piggott et al., 2005;
Qiao and Sherris, 2013; Hanewald et al., 2013).
Retirement tontines (e.g., Milevsky and Salisbury, 2015,
2016; Fullmer, 2019; Chen et al., 2021).
Pooled annuity funds (e.g., Stamos, 2008; Donnelly et al.,
2013).
Variable annuity (e.g., Balter et al., 2020).
Variable payment life annuity (e.g., ACPM, 2017).
Variable payout annuities (e.g., Horneff et al., 2010).
Decumulation-only collective defined contribution schemes
(e.g., Donnelly, 2023).
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Real-world examples

1952 1967 2021 2022
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Why now?

Declining prevalence of guaranteed pensions.
Maturation of account-based accumulation schemes.
Growth of conditional and variable elements in lifetime
income provision.
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Investment strategies

The design of these pools has primarily been examined
within the context of elementary investment strategies, like
constant, static allocations and investment strategies that
only involve risk-free assets.
Two notable exceptions rely on volatility targeting:

➥ Olivieri, Thirurajah, and Ziveyi (2022).
➥ Li, Labit Hardy, Sherris, and Villegas (2022).

Both studies showed that volatility targeting improves the
investment performance while reducing volatility and
downside risk.
They only considers investment risk in the volatility target,
exposing the pool to uncontrolled mortality risk.
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Research question

How to adjust the asset allocation to target the total
volatility of the benefit adjustment?

In other words, can we keep the risk associated with
benefit variation as constant as possible through

time?
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Contributions

This study offers two contributions:
1 Theoretical: We derive an asset allocation strategy that

considers both investment and mortality risks at the same
time.

2 Applied: We investigate the implementation of the
volatility-targeting strategy, which requires state-of-the-art
data generating process.
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The assumed data generating process



Components of the generating process

1 A model for financial asset returns.
2 A mortality model.
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Market
We assume that the pool can invest in two assets:

Market

Risk-free asset Risky asset

1 A risk-free asset with a stochastic rate of return; that is,

dPt

Pt
= rt Pt dt ,

where rt represents the time-t risk-free rate and is based on
a three-factor Vasicek model.

2 A risky asset modelled using a continuous-time two-factor
stochastic volatility model that allows for jumps.
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Components of the generating process

1 A model for financial asset returns.
2 A mortality model.
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Mortality model

We propose using a stochastic mortality model that
accounts for improvements in the spirit of Lee and Carter
(1992) and Cairns et al. (2006).
We use a continuous-time version of a two-factor APC
model; we model the time-t central death rate for age x as

log
(
mx,t

)
=α⌊x⌋ + κ1,t + κ2,t

(
⌊x⌋ − x̄

)
.
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Mortality model

We assume that the first and second period effects are
modelled by the following SDEs in continuous time:

dκ1,t = θκ1 dt + σκ1 dWκ1,t ,

dκ2,t = − ζκ2 κ2,t dt + σκ2 dWκ2,t ,

where
[

Wκ1 Wκ2
]⊤ is a two-dimensional standard

Brownian motion with d⟨Wκ1 ,Wκ2⟩ = ρκ1,κ2 dt .
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Mortality model

Once death rates are generated, we can recover survival
probabilities using the following relationship:

spx,t = exp
(
−

∫ s

0
mx+u,t+u du

)
.
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Lifetime pension pool design



Basic assumptions

A total of L0L0L0 members joins the pool, each bringing K at
inception.
All members joining have the same age x at inception.
We assume that members receive m payments each year
of h = 1

m as long as they are alive.
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Benefit payments

The total benefit amount paid by the lifetime pension pool at
time t is

Bt =
1
m

Ft

ä(m)
x,t

1{Lt≥1},

where ä(m)
x,t denotes the actuarial value of a whole life annuity

due making m payments per year (see, e.g., Bégin et al.,
2024, for a semi-closed-form solution).
Each surviving member’s benefit amount is given by

bt =
Bt

Lt

at time t as long as the pool size is strictly positive.
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Fund value dynamics

The investment allocation at time t − h is given by:
Proportion ωt in the risky asset.
Proportion 1 − ωt in the risk-free asset.

The fund dynamics can be described as follows:

Ft =
(
Ft−h − Bt−h

) (
ωt

St

St−h
+ (1 − ωt )

Pt

Pt−h

)
.
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Benefit adjustment rule
The time-t benefit is updated according to

bt = ηt bt−h ,

where the adjustment is a product of three components:

ηt =

It or IEA︷                                  ︸︸                                  ︷(
ωt

St

St−h
+ (1 − ωt )

Pt

Pt−h

)
e−yh

Mt or MEA︷                   ︸︸                   ︷
Lt−h hpx−h,t−h

Lt
1{Lt≥1}

×
ä(m)

x−h,t−h − h

ä(m)
x,t e−yh

hpx−h,t−h︸                 ︷︷                 ︸
Ct or CEA

and y is the hurdle rate used to compute the annuity price
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Benefit volatility for static allocation
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Benefit volatility for static allocation
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Benefit volatility targeting



Benefit volatility targeting

The proportionωt can be controlled by the pool operator such
that

Var [ηt | Ft−h] = σ2
∗ h,

where σ∗ is the (annualized) exogenous volatility target.
The pool operator is not privy to the data generating
process and needs to devise practical means to compute
the variance via coarse assumptions.
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Pool operator assumptions

The mortality table is static and based on time t − h
information.
The number of pool members at time t conditional on
information at time t − h is given by

Lt ∼ Bin(Lt−h , hp̃x−h,t−h).
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Pool operator assumptions
The time-t risky asset price St based on the information at
time t − h is given by

St = St−h eεt , εt ∼ N

((
r̂t + ξ −

σ̂2
t

2

)
h, σ̂2

t h
)
,

where σ̂2
t is obtained via nonparametric volatility forecasting

methods based on high-frequency returns.
We rely on a simple implementation of the heterogenous
autoregressive (HAR) model similar to that of Corsi (2009)
and Corsi and Renò (2012):

σ̂t = χ + β(d) RVol(1)
t−h + β(w) RVol(5)

t−h + β(m) RVol(21)
t−h

+ γ(d) r (1)
t−h + γ(w) r (5)

t−h + γ(m) r (21)
t−h + ϵt ,
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Pool operator assumptions

Let Ĩt , M̃t , and C̃t be the pool operator’s proxy for It , Mt , and
Ct , respectively.
We can thus obtain that

σ2
∗ h = Var

[
Ĩt M̃t C̃t

∣∣∣ Lt−h , hp̃x−h,t−h , r̂t , σ̂t

]
= E

[
Ĩ2
t

∣∣∣ r̂t , σ̂t

]
E

[
M̃2

t

∣∣∣ Lt−h , hp̃x−h,t−h

]
− E

[
Ĩt
∣∣∣ r̂t , σ̂t

]2
E

[
M̃t

∣∣∣ Lt−h , hp̃x−h,t−h

]2

because C̃t = 1. All these moments are known in closed-
form solutions.
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Volatility-targeting-based allocation
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Volatility-targeting-based allocation
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Implementation of the strategy



Base assumptions

Pool of 1,000 members.
Each member bring $1,000,000 to the pool.
Benefits are paid monthly, at the beginning of each month.
Volatility target σ∗ set to 10%.
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Illustrative example
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Illustrative example
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Risky asset allocation
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Annualized benefits
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Benefit adjustments
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Robustness tests

Exogenous volatility target: 13% and 16%.
Pool size: 250 and 500 members

All tests lead to very robust results.
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Limitations in practical situations



Leverage constraints
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Leverage constraints
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Brokerage fees
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Brokerage fees
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Rebalancing frequency

The average is higher for the dynamic allocation; the standard
deviation is higher, too, but it is driven by the right tail.

75 85 95 105

DA SA DA SA DA SA DA SA

Annual 108.2 99.9 125.6 109.3 164.1 139.2 226.7 244.9
42.0 32.8 89.6 71.6 204.0 169.6 541.0 663.4

Semiannual 113.0 102.3 134.8 112.2 182.0 143.3 260.0 256.6
46.1 34.6 101.5 75.1 243.2 178.6 721.3 730.2

Bimonthly 118.7 103.9 147.2 114.0 209.2 146.5 316.5 272.8
49.6 35.7 114.6 77.6 293.1 186.2 882.5 757.1

Biweekly 134.3 104.5 187.9 114.3 303.6 147.7 484.2 271.9
56.1 36.2 147.9 78.2 433.0 189.6 1339.6 743.3

Weekly 153.3 104.6 243.5 114.7 442.4 148.0 747.9 273.0
63.6 36.3 190.7 78.6 626.8 191.1 2041.1 755.7

DA stands for dynamic allocation and SA for static allocation.
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Rebalancing frequency

The benefits obtained with the dynamic allocation method tend to
be higher than those obtained with static allocation.

75 85 95 105

DA SA DA SA DA SA DA SA

Annual 77.1 22.9 82.3 17.7 83.5 16.5 47.9 52.1

Semiannual 78.6 21.4 85.5 14.5 88.3 11.7 54.4 45.6

Bimonthly 82.3 17.7 90.2 9.8 93.6 6.4 67.2 32.8

Biweekly 96.4 3.6 99.4 0.6 99.8 0.2 94.4 5.6

Weekly 99.8 0.2 100.0 0.0 100.0 0.0 99.7 0.3

DA stands for dynamic allocation and SA for static allocation.
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Rebalancing frequency and fees

Combining both realistic broker fees and weekly rebalancing
does lead to a slight reduction in the benefit streams
compared to those of without commissions.
However, these benefits remain significantly higher than
those achieved through the static strategy.
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Concluding remarks and future research



Concluding remarks

Volatility-targeting approaches that account
for investment and mortality risks yields
more steady benefit streams, reducing

benefit risk.
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Future research

1 Optimal hurdle rate policy.
➥ Could change as a function of investment and mortality

experience.

2 Fees in lifetime pension pools.
➥ Optimal fee structures.
➥ Impact of fees on lapse.

3 Delaying gains and losses.
➥ New designs could smooth consumption.

4 Issues related to intergenerational risk sharing.
➥ Quantification of intergeneration trades.
➥ Impact of investment policy on intergeneration

cross-subsidies.
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Thank you! Obrigado!

Questions?

Jean-François Bégin, PhD, FSA, FCIA
Department of Statistics and Actuarial Science
Simon Fraser University
Canada
Email: jbegin@sfu.ca
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