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Motivation 1: profit sharing

> Profit sharing in life insurance
Mindestzufihrungsverordnung (MindZV):

Insurer has to refund at least

> 90% of surplus coming from capital gains
> 90% of surplus coming from insurance risk
> 50% of the remaing surplus

to the policyholders.



Motivation 1: profit sharing

> Profit sharing in health insurance
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Motivation 2: explaining profits and losses

» MCEV reporting
Analysis of earnings / movement analysis

> IFRS 17 reporting
Movements in insurance contract liabilities analysed by components

> Solvency Il reporting
Analysis of change in SCR

Allianz — Group Financial Results 1Q 2023 — Own Funds (EUR bn)

Taxother

https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/
investor-relations/en/results/2023-1qg/en-allianz-analyst-presentation-10-2023.pdf
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» single time period
» multiple time periods
» continuous time



Endowment insurance

Consider a 1-year endowment insurance that starts at age y.

Profit and loss at time 1
, 1-—
1+ ~ﬁiy —(1=1<ny)
S—— ~————
zero coupon bond —

survival benefit

premium
T (Bl 20 Bl 0 Bl L 25
—— 141 147 147 147
compounding . .
risk loading randomness
, 1-q 1—q —x X4
=(14i+x) s 4 - :
(1 417+ %) <1+/ T4+i+xs 1+i+xs
Drivers of profits and losses
xi =1(r,<13 — ) unsystematic mortality risk
Xo = q}', —Qy systematic mortality risk
Xs=1 —1i interest rate risk

X3=1-0 time (time value of money)



Endowment insurance

P&L function

. 1—q 1-g —x X
. X4 y _ y
f(x1, X2, X3, X4) := (1 + i + X3) (1 ; Tritx +1 ; Xs)

P&L is zero for zero drivers

£(0,0,0,0) = 0

Decomposition problem

Let x = (x4, ..., Xy) be a vector of drivers and f : R — R a P&L function with
f(0,...,0) = 0. Decompose f(x) into contributions

f(x) =g1(x) + -+ ga(x)

such that gx(x) is the P&L contribution of driver x.




Heuristic decomposition concepts

For simplicity, let d = 2 here.

Taylor approximation of first order

f(x1, %) = f(x1, x2) — £(0,0)
= Xy Ox, (0, 0) + X2 Ox,f(0, 0) +Remainder

=g1(x1,%2) —g2(x1,x2)
Properties

> may not exist

> not exact, i.e. f # g1 + g2



Heuristic decomposition concepts
For simplicity, let d = 2 here.

Sequential updating (SU) decomposition

f(X1,X2) = f(X1,X2) — f(0,0)
= f(x1,x2) — f(x1,0) + f(x1,0) — £(0,0)

=g2(X1,%2) =g1(x1,x2)

Alternative definition (different!)
f(x1, %) = f(x1, x2) — £(0, x2) + f(0, x2) — £(0, 0)

=g1(x1,%2) =02(X1,%2)

Properties
> always exists
> exact

» depends on update order
Junike & Flaig (2024): impact of update order can be significant



Heuristic decomposition concepts

For simplicity, let d = 2 here.

One at a time (OAT) decomposition

g1(x1, X2) := f(xy,0) — £(0,0)
92(x1, x2) := f(0, x2) — f(0,0)
Properties
> always exists
> not exact
» (update) order invariant



Heuristic decomposition concepts

For simplicity, let d = 2 here.

Averaged sequential updating (ASU) decomposition

f(x1,0) — £(0,0)  f(x1,%) — £(0, x2)

g1(x1, X) := 5 + 5
f(0,0) — (0, x2) n f(x1,x2) — f(x1,0)

92(X1, X2) : 5 5

Properties
> always exists
> exact

» order invariant



Investment in a stock and a zero coupon bond

P&L = (A(1) + B(1)) — (A(0) + B(0))

‘value at time 17 ‘value at time 0

Drivers of profits and losses

x; = A(1) — A(0) change in stock value
X = B(1) — B(0) change in bond value
P&L function
f(x1,x2) = (A(0) + x1 + B(0) + x2) — (A(0) + B(0))
= X1+ X2

It holds that £(0,0) = 0.



Investment in a stock and a zero coupon bond

Taylor decomposition
gi(x) = xi
ga(x) = i

SU decomposition
gi(x) = xi
G2(X) = X2

ASU decomposition

91(x) = x
92(X) = x2

OAT decomposition
g1(x) = x
g(x) = xe

alternative SU decomposition

g1(x) = xi
g2(x) = xo



Investment in a foreign stock

P&L = A(1)R(1) — A(0)R(0)
—_—

‘value at time 17 ‘value at time 0’

Drivers of profits and losses

x; = A(1) — A(0) change in stock value
x> = R(1) — R(0) change in currency value
P&L function

f(x1,x2) = (A(0) + x1)(R(0) + x2) — A(0)R(0)
= Xi R(O) -+ XQA(O) =+ X1 Xo

It holds that £(0,0) = 0.



Investment in a foreign stock

f(X1 s Xg) = Xi R(O) =+ XQA(O) “+ X1 Xo

Taylor decomposition

91(x) = x1R(0)
92(x) = x2A(0)

SU decomposition (1,2)
91(x) = x1R(0)
gg(X) = XQA(O) =+ X1 X2
ASU decomposition

1
g1(x) = x1R(0) + ZXXe

]
92(X) = x2A(0) + 5X1%e

OAT decomposition
g1(x) = x1R(0)
92(x) = x2A(0)

SU decomposition (2,1)

g1(x) = x1R(0) + x1x2
92(x) = x2A(0)



P&L function

f(x) = (1 +i+ x3) <

SU decomposition (1,2,3,4)

91(%) = xq
1
Go(X) = xo —
141
1—qy — X 1—qgy — X0
g0 = —F—= - —~
14+ 1+i+x3
1— q 1—qy — X0+ x4
94(X):X4( A v
147 14+i+x3

SU decompositions (4,3,2,1) and (4,3,1,2)

91(%) = x4
G2(X) = x2
1— qy
X) =
93(X) = x3 T

)

Endowment insurance

1—qy

71*%*)(2*)(1)
1+ 1+i+x3
SU decomposition (3,2,1,4)

1

91(x) = x m

9(x) = X21+i17+x3

g0 = L -

800 = X4(117+iy - 71%74:(2)(: .

)



Endowment insurance

SU decomp. (4,3,...)

contribution formula
Milorodt & Helbig (1999, p. 541)

unsystematic mortality risk

(< —a) Vs

systematic mortality risk

(q}lf - Qy) Vi

(CI;// - Qy) V;

interest rate risk

(" =N(Vo + Po)

(7" = D(Vo + Po)

time

V=0
Vi =1
P0:1_qy

14

prospective reserve at time 0

prospective reserve at time 1

premium at time zero




Intermediate summary

» SU decompostion: exact, order dependent
» OAT decomposition: not exact, order invariant
» ASU decomposition: exact, order invariant

The contribution formula in life insurance is a SU decomposition with the
update order

1. time
2. interest rate risk
3. unsystematic & systematic mortality risk
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Example: insurance reporting

Allianz — Group Financial Results 1Q 2023 — Own Funds (EUR bn)
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Axiomatic decomposition concept

Cooperative game theory: Let
f:{0,1} >R, £(0,...,0)=0
be the P&L of a game with d € N players.
Theorem (Shapley, 1953)
There exists a unique decomposition with the following properties:

» Exactness: f=gi +---+gu
» Order invariance: permutation = : {1,...d} — {1,...d}

f'(X) = F(Xn(1)s - s Xn(a) = Ty (X) = Gk(X(1), - - - 5 X(a))
> Additivity: ' =f+f = g/ =g+ ke{l,...,d}
» Dummy neutrality: f(x1,...,xg) constantinxy, — gx=0

This unqgiue decomposition is the ASU decomposition.




Axiomatic decomposition concept

Shapley-Shubik construction: For any given
f:R >R, £0,...,00=0
we define the family of games
{01} =R, (2):=f(xaz,..., XZ4), x eR.
(We indeed have f*(0,...,0) =0.)
Lemma

> It holds that f(x) = *(1,...,1), x € R.

> Let (g7,...,9%), x € R?, be the ASU decompositions of the games f*,
x € RY%. Then
g(x) :=gx(1,...,1), x€ER,
is the ASU decomposition of f.




Axiomatic decomposition concept

Popular belief: “The Shapley axioms uniquely characterize the ASU
decomposition.” Wrong!

The ASU decomposition of a mapping f : RY — R with (0, ..., 0) = 0is not uniquely characterized by the
following properties:

> Exactness:f =gy + -+ gy

> Order invariance: permutation = : {1,...d} — {1,...d}
1) = fr(tys - -2 Xm(@) = gy (X) = G(Xn(1)s - 5 X ()
> Additivity: /"' =+ = g/ =gk +gp. ke {1,...,d}

Dummy neutrality: f(xq, .. ., Xg) constantin x, == gx =0



Axiomatic decomposition concept

Unique characterization of ASU
> Shapley (1953): f: {0,1}9 = R, £(0,...,0) = 0 (4 axioms)
> Sprumont (1998), Friedman & Moulin (1999): f : [0, 00)? — R,
f(0,...,0) = 0, monotone & differentiable (5/7 axioms)
> Christiansen & Junike (2024): f : R — R, (0, ...,0) = 0, Borel
measurable (8 axioms)

Theorem

The ASU decomposition is uniquely characterized by the following properties:
1. Exactness
2. Order invariance
3. Dummy neutrality

4. Linearity (not just Additivity): c, 8 € R real numbers
" =af+ 8" = gy = agx + By Yk

5. Monotonicity: x, — f(x) monotone =—  xx — gx(x) monotone

6. Sampling consistency: x” — x real sequence
limn— oo f(x") = f(x) and limp— oo gk (x") exists VK =  limp— 00 gk(x") = gk(x) VK

7. Approximation consi y: limp s oo f7 = fand limp s o0 g eXists VK = limp 00 gF = gk VK

8. Unit invariance: A = diag(a1, . . . , ay) diagonal matrix with a1, . . . g € R\ {0}
f'(x) = f(Ax) forall x € RY  —>  gi(x) = gx(Ax) forallx € R and k € {1,...,d}




Intermediate summary

» ASU decomposition is the unique decomposition that is
exact, order invariant, dummy neutral, linear, monotone,
sampling consistent, approximation consistent, unit
invariant.



» single time period v/
» multiple time periods
» continuous time



Endowment insurance

Consider an n-year endowment insurance that starts at age y.

Profit and loss attime t € {0,1,...,n}

t
V>t Py
s =[Jc +i,i)( Py v y
(1+0)" (1) (i)t
k= Hkq( k)
compounding premium expected survival benefit
Drivers of profits and losses as trajectories x1,...,xs: {0,1,...,n} = R

X1(t) — X1(t— 1)
Xg(t) — Xg(t — 1)
Xs(t) — X3(lL — 1)
)
)=

Ty>t 1} (1 {Ty<ty — q}H 1) unsystematic mortality risk
Ty>t 13(Qy4t—1 — Qy+t—1)  systematic mortality risk
interest rate risk
- (t -1) time

X4(t) — X4(f -1

with x1(0) = x2(0) = x3(0) = x4(0) = 0.



Endowment insurance

Available information at time t given by t-stopping
X()=x(-At), ke{l,....d}

It holds that x{ = 0 for all k, where 0 denotes the zero function.

The profit and loss at time t € {0, ..., n} can be represented as

t n—1
i’ nPy >0 I (1 *Qy\k)>
= 14+ . — .
L k)<(1 0T I (T i) ()
for the P&L functional f : (R{%~")9 — R defined by

f(X17X27X37X4)

X4(n)
_ ; Py 1 — Qyk—1 — Axi(k) — Axe(k)
_E(1+I+AX3 <1+/ 147+ Axs(k)

It holds that £(0,0,0,0) =



Decomposition problem

Let D := {functions h : Ng — R with h(0) = 0}.

Decomposition problem
For given
» time-dynamic drivers xi,...,Xqg € D
» a P&L functional f : DY — R with £(0,...,0) =0
find P&L contribution functionals gs, . .., gs : D° — R such that

X4, .. x) =910, ..., x4+ 4+ ga(x,...,x5)  VteNg




Heuristic decomposition concepts
For simplicity let d = 2.

Sequential updating (SU) decomposition

f(X1t7X2t’) = f(X1t7X2t) - f(X107X§)

= 3 (F(0d)). 0)%) — 1y () ))

k=1
=:go(x},x4)
oo
)t k—1
+ Z ( ), (x2) ) = f((x) (e))
k=1
=191 (x{,x})
Properties
> exact

> order dependent



Heuristic solutions

For simplicity let d = 2.

One at a time (OAT) decomposition

91(xi, x}) = i ()‘(()(1’)‘()7 (th)k*1) _ f((x1!)k717(xé)k71))
k=1
e, xd) = 7 (O, 08)) = (), 08 )
k=1
Properties
> not exact

» order invariant



Heuristic solutions

Averaged sequential updating (ASU) decomposition
... arithmetic average of all variants of the SU decompostions ...

Properties
> exact

» order invariant



Endowment insurance

SU decomp. (4,3,...)

contribution formula
Milbrodt & Helbig (1999, p. 541)

unsyst. mort. risk 1o (< — Q1) Ve | O

on (t—1,1]

syst. mort. risk 1ot (et — Q=) Vi | (Gpie1 — Qyae—1) Vi
on (t—1,t]

interest rate risk 1ty (il = N(Vier + Peoy) | (i =) (Viet 4+ Proy)
on (t—1,1]

time value of money || (1 + i{)St—1
on (t—1,t]

Vi = prospective reserve at time ¢
St = surplus at time ¢

P; = premium at time ¢




Health insurance

Consider a lifelong health insurance that starts at age y.

Profit and loss at time ¢

! , ! . 2 (P = K)o (1, >0 k—tPy+t

SI:Z(P_Ky+k)1{Ty>k} H (1+i)+ Z (1 + et
k=0 I=k+1 k=t+1
Drivers of profits and losses

xi(t) = x(t—1) =151 (1{Ty§,} —(g+w))) unsyst. decr. risk
Xe(t) = xo(t — 1) = 1y7,51-13((9" + W')yst — (@ + W)y4r)  syst. decr. risk
x3(t) —xa(t—1)=i{ —i interest rate risk
Xa(t) — xa(t—1) =t—(t—1) time
xs5(t) — xs(t — 1) = Kyt — Kyt health cost risk

and x4 (0) = XQ(O) = X3(O) = X4(0) = X5(0) =0.



Health insurance

The profit and loss at time t € Ny can be represented as
St =f(xi,...,x5)

for the P&L functional f : (R{%~")9 — R defined by

(X1, X2, X3, X4, X5)
50 1 _ (q+ )y 1 — Axi(l) — Axp(l) 4

1+i+ ax()) E (1 i+ Ax()

8

(P =Ky — Axs(1)
k

Il
o

=1

It holds that £(0, 0,0, 0, 0) = 0,



Health insurance

SU with order (4,3,...)

time value of money on (t — 1, ]

(1 +i) St

interest rate risk on (f — 1, {]

151y (if = N(Vier + P)

V; = prospective reserve at time ¢

St = surplus at time ¢

P = yearly premium




Intermediate summary

SU / OAT / ASU decompositions have straightforward extensions to
multiple periods

> The contribution formula in life insurance is an SU decomposition
(order dependent) with the update order
1. time

2. interest rate risk
3. unsystematic and systematic mortality risk

> The surplus splitting in health insurance is an SU decomposition
(order dependent) with the update order
1. time

2. interest rate risk
3. unsystematic and systematic mortality risk

Rather use the order invariant ASU decomposition?



» single time period v/
» multiple time periods v/
» continuous time



Decomposition problem
Let D := {cadlag functions h : [0, c0) — R with h(0) = 0}.

Decomposition problem
For given
> time-dynamic drivers xq,...,Xq € D
» a P&L functional f : D¢ — R with (0,...,0) =0
find P&L contribution functionals gy, . .., gs : D° — R such that

O, ... x5 =g (X, .. x5 + -+ ga(xd, ., xE).

Available information at time t given by t-stopping
xi() = x(- AL, ke{l,... d}
Note that x{ = 0, so that

f(x,...,x3) = £(0,...,0) =0.



Heuristic decomposition concepts

LetT={0=1f <t <---} be atime grid with t, — co.

SU decomposition with respect to 7

oo

gi(x1, %) = Z (f(xfk, xz'k*‘) _ f(X:k—1 7 Xszq ))

k:

G2(X1, %) =

NgE

(FOxde ) = 1))

=
i

> exact
» order dependent

> time grid dependent
Junike & Flaig (2024): impact of time grid can be significant
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Heuristic decomposition concepts

LetT={0=1f <t <---} be atime grid with t, — co.

OAT decomposition with respect to 7

(fod g = " )

gk

gi(x1, %) =
K

Gl xe) = > (FO4 o) = 10 )

NgE

=
i

> not exact
» order invariant

> time grid dependent
Junike & Flaig (2024): impact of time grid can be significant



Heuristic decomposition concepts

Let7T={0=1f <t <---} beatime grid with t, — oo.
ASU decomposition with respect to 7

... arithmetic average of all variants of the SU decompostions ...

> exact
» order invariant

> time grid dependent
Junike & Flaig (2024): impact of time grid can be significant



Heuristic decomposition concepts

Jetses & Christiansen (2022): infinitesimal concept

Infinitesimal sequential updating (ISU) decomposition

ISU= Iim SU”
|T|—0

Infinitesimal one at a time updating (IOAT) decomposition

IOAT = lim OATT
| T|—0

Infinitesimal average sequential updating (IASU) decomposition

IASU = lim ASUT
|T|—0

> time grid invariant
> (the other properties are preserved)



Example

Consider the case

f(xi, x5) = xi()x(t), te][0,1].

» For 71 = Ny the ASU decomposition gives

x1(1)x(1)
2

x1(1)x(1)
2

gil(x,x2) =
gg(X1 7X2)

» For 7> = {k/2 : k € Ny} the ASU decomposition gives

g1 x}) = 1(0:9)%(0-5) 5)2X2(° 2 4 (xi(1) = x4 (0.5))7"2(0'5); x(1)
gg(X11,X21) _ (0 5)2X2(O 5) + (0 5)2+ X1(1)( ( ) _ X2(0 5))

The ASU decomposition depends on the choice of the grid.



Example
» For 7, ={k/n: k € No} the ASU decomposition gives

n

x2((k—1)/n) + xa(k/n)

G0 x8) = S (x(k/m) — xi((k — 1)/m)) ’
k=1

g5ty = 30 2= 2RI (1 ) k- 1))
k=1

> If x4, x2 are differentiable, then the IASU decomposition exists and
gives

O, xe) = xi(1)xe(1)

= lim gf(x{,x2) + lim g8(x{,x2)
n—oo

:/1 xz(t)dx1(t)+/1 x1(t)dxz(t)

(exact, order invariant, time grid invariant)



Endowment insurance

Consider an n-year endowment insurance that starts at age y.

Profit and loss at time m

S efo[ ¢ (u)du ( g Jo nlytudu Tr,>n e i ulyruydu )
t =
——

A+ glfe'wau (1 4i)n-t

compounding
premium expected survival benefit
Drivers of profits and losses as trajectories x1,..., x4 : {0,1,...,n} - R
dxi(t) = dN(t) — 17,0 i/ (v + t)at unsystematic mortality risk
dxao(t) = 17,0 (' (y + 1) — u(y + t))dt  systematic mortality risk
dxa(t) = (¢'(t) — In(1 + i) alt interest rate risk
dxs(t) = dt time

with x1(0) = x2(0) = x3(0) = x4(0) = 0.



Endowment insurance

The profit and loss at time ¢ € [0, n] can be represented as
St =f(xi,...,xy)

L e [o] 1(y+u)du 1720 e [ u(y+u)du
_ efo ¢ (u)du {Ty>t}
(

1+ 0)n els o' (wdu (1 4 f)n—t
for the P&L functional f : (R®™M)? — R defined by

f(X1 , X2, X3, X4)

= e 0X4(n) (In(1 —i)du+dx3(”)) <67 Jg' wly+u)du e s (mU(y+U)du+dX1 (U)+dX2(U)) )
- (1+0)r olf (In(1+i)du+dxg(u))

It holds that £(0,0,0,0) = 0.



Endowment insurance

SU decomposition for any update order

unsystematic mortality risk at ¢ \A(dN(t) 1o (y + t)dt)

systematic mortality risk at ¢ Vilir,>n (u’(y +t)—ply+ t)) dt

interest rate risk at ¢ Vi 1(7,5n (qu’(l‘) —In(1+ i)) dt

time value of money at ¢ Si— ¢'(t)dt

V; := prospective reserve at time ¢

St := surplus at time t



Conjecture: “The ISU decomposition is order invariant.” Wrong!

Let x; and x» be paths of two Brownian motions and
f(xi, x2) = xi(t)x2(t).

ISU decomposition with update order (1,2)
t
91(x}, x5) = / xo(u)dxs (u)
0

t
0ot ) = [ (ba(u) + o el(0)

IASU decomposition
t
1
01(x, 1) = [ a(w)d(u) + gl el
0

0ot ) = [ x(u)cbe(w) + 3.t



Axiomatic decomposition concept

Theorem (Christiansen & Junike, 2025)

For a “large class” of P&L functionals, the IASU decomposition is the only
decomposition with the following properties:

1.

© N o o~ 0D

Exactness

Order invariance

Dummy neutrality

Linearity

Monotonicity

Sampling consistency
Approximation consistency
Unit invariance




Investment in a foreign fund

P&L = A(H)A(t) — A(0)R(0)
—_—

‘value at time € “value at time 0’
Drivers of profits and losses
x1(t) = A(t) — A(0) change in fund value
x2(t) = R(t) — R(0) change in currency value
P&L functional

f(x1, xz) = (A(0) + xi(£))(R(0) + Xe()) — A(0)R(0)
= x1()R(0) + x2(£)A(0) + x1 () x2(t)

It holds that (0, 0) = 0.

IASU decomposition (A and R as semimartingales)
toty ‘ 1
f(xi, %) = <x1(t)R(O) +/0 xo(u)dxi(u) + 2[x1,x2](t))
+ (040 + [ setuidn() + 3l
0



Intermediate summary

> ISU /I0AT / 1ASU decompositions extend discrete-time concepts to
continuous time and are time grid invariant

» ISU decomposition order invariant if the drivers have zero covariation,
but in general order dependent



» single time period v’
» multiple time periods v/
» continuous time v/

» curse of dimensionality



Computational effort

> (I)SU decomposition: O(d)
> (I)ASU decomposition: (29~ "d)

d 27 'd

i i

2 2

3 6

4 16

5 96

6 224

7 512
20 | 10.485.760




2SU approximation for ASU

Theorem (Junike & Stier & Christiansen, 2025)
Let
> f(xi,...,xy) = h(xi(t),...,xs(t)) forall t >0
» h:R?— R twice continuously differentiable
> Axi(t)Ax(t) =0fort > 0andj#j
Then it holds that

IASU = %(/SU + 1SUrey)

where SU, denotes the SU decomposition with order (d,d — 1,...,1).

Application: for a sufficiently fine time grid 7 we have
ASU” ~ IASU = %(/su + 1SUrev) = %(SUT + SUL,)

Computational effort: O(2sd) where s = maxr |th11 — bl



Intermediate summary

(DASU is computationally costly, but ...
> if x1,..., X4 have no simultaneous jumps, we usually have

IASU = %(/SU + 1SUrey)
> if x1,..., Xqg have no simultaneous jumps 7 is narrow, we usually have
ASUT ~ %(SUT + SUL,

Junike & Flaig (2024): monthly time grid seems to work well in insurance



» single time period v/
» multiple time periods v/
» continuous time v/

» curse of dimensionality v/



Final summary

» SU decoposition is heavily used in insurance practice

> exact

> order dependent

> time grid dependent
> computationally cheap

> IASU decomposition is theoretically superior

> exact

> order invariant

> time grid invariant

» computationally costly

> 2SU decomposition on narrow grid (no simultaneous jumps in the
drivers)

> exact

> approximately order invariant

> approximately time grid invariant
> computationally doable
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