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Motivation 1: profit sharing

▶ Profit sharing in life insurance

Mindestzuführungsverordnung (MindZV):

Insurer has to refund at least

▶ 90% of surplus coming from captial gains
▶ 90% of surplus coming from insurance risk
▶ 50% of the remaing surplus

to the policyholders.
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Motivation 1: profit sharing

▶ Profit sharing in health insurance

Milbrodt & Röhrs (2016, p. 405)
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Motivation 2: explaining profits and losses

▶ MCEV reporting
Analysis of earnings / movement analysis

▶ IFRS 17 reporting
Movements in insurance contract liabilities analysed by components

▶ Solvency II reporting
Analysis of change in SCR

Allianz – Group Financial Results 1Q 2023 – Own Funds (EUR bn)

https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/
investor-relations/en/results/2023-1q/en-allianz-analyst-presentation-1Q-2023.pdf

https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/investor-relations/en/results/2023-1q/en-allianz-analyst-presentation-1Q-2023.pdf 
https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/investor-relations/en/results/2023-1q/en-allianz-analyst-presentation-1Q-2023.pdf 
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▶ single time period
▶ multiple time periods
▶ continuous time
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Simple endowment insurance
Consider a 1-year endowment insurance that starts at age y .

Profit and loss at time 1

(1 + i ′)︸ ︷︷ ︸
zero coupon bond

· 1 − qy

1 + i︸ ︷︷ ︸
premium

− (1 − 1{Ty≤1})︸ ︷︷ ︸
survival benefit

= (1 + i ′)︸ ︷︷ ︸
compounding

·
(

1 − qy

1 + i
−

1 − q′
y

1 + i ′︸ ︷︷ ︸
risk loading

+
1 − q′

y

1 + i ′
−

1 − 1{Ty≤1}

1 + i ′︸ ︷︷ ︸
randomness

)

= (1 + i + x3)
x4

(
1 − qy

1 + i
− 1 − qy − x2

1 + i + x3
− x1

1 + i + x3

)
Drivers of profits and losses

x1 = 1{Ty≤1} − q′
y unsystematic mortality risk

x2 = q′
y − qy systematic mortality risk

x3 = i ′ − i interest rate risk

x4 = 1 − 0 time
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Endowment insurance

P&L function

f (x1, x2, x3, x4) := (1 + i + x3)
x4

(
1 − qy

1 + i
− 1 − qy − x2

1 + i + x3
+

x1

1 + i + x3

)
P&L is zero for zero drivers

f (0, 0, 0, 0) = 0

Decomposition problem

Let x = (x1, . . . , xd) be a vector of drivers and f : Rd → R a P&L function with
f (0, . . . , 0) = 0. Decompose f (x) into contributions

f (x) = g1(x) + · · ·+ gd(x)

such that gk (x) is the P&L contribution of driver xk .



page 8

Heuristic decomposition concepts

For simplicity, let d = 2 here.

Taylor approximation of first order

f (x1, x2) = f (x1, x2)− f (0, 0)

= x1 ∂x1 f (0, 0)︸ ︷︷ ︸
=g2(x1,x2)

+ x2 ∂x2 f (0, 0)︸ ︷︷ ︸
=g1(x1,x2)

+Remainder

Properties
▶ may not exist
▶ not exact, i.e. f ̸= g1 + g2
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Heuristic decomposition concepts

For simplicity, let d = 2 here.

Sequential updating (SU) decomposition

f (x1, x2) = f (x1, x2)− f (0, 0)

= f (x1, x2)− f (x1, 0)︸ ︷︷ ︸
=g2(x1,x2)

+ f (x1, 0)− f (0, 0)︸ ︷︷ ︸
=g1(x1,x2)

Alternative definition (different!)

f (x1, x2) = f (x1, x2)− f (0, x2)︸ ︷︷ ︸
=g1(x1,x2)

+ f (0, x2)− f (0, 0)︸ ︷︷ ︸
=g2(x1,x2)

Properties
▶ always exists
▶ exact
▶ depends on order/labeling of risk factors
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Heuristic decomposition concepts

For simplicity, let d = 2 here.

One at a time (OAT) decomposition

g1(x1, x2) := f (x1, 0)− f (0, 0)

g2(x1, x2) := f (0, x2)− f (0, 0)

Properties
▶ always exists
▶ not exact
▶ order invariant
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Heuristic decomposition concepts

For simplicity, let d = 2 here.

Averaged sequential updating (ASU) decomposition

g1(x1, x2) :=
f (x1, 0)− f (0, 0)

2
+

f (x1, x2)− f (0, x2)

2

g2(x1, x2) :=
f (0, 0)− f (0, x2)

2
+

f (x1, x2)− f (x1, 0)
2

Properties
▶ always exists
▶ order invariant
▶ exact
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Investment in a stock and a zero coupon bond

P&L = (A(1) + B(1))︸ ︷︷ ︸
‘value at time 1’

− (A(0) + B(0))︸ ︷︷ ︸
‘value at time 0’

Drivers of profits and losses

x1 = A(1)− A(0) change in stock value

x2 = B(1)− B(0) change in bond value

P&L function

f (x1, x2) = (A(0) + x1) + (B(0) + x2)− A(0)− B(0)

= x1 + x2

It holds that f (0, 0) = 0.
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Investment in a stock and a zero coupon bond

Taylor decomposition

g1(x) = x1

g2(x) = x1

OAT decomposition

g1(x) = x1

g2(x) = x2

SU decomposition

g1(x) = x1

g2(x) = x2

alternative SU decomposition

g1(x) = x1

g2(x) = x2

ASU decomposition

g1(x) = x1

g2(x) = x2

OAT decomposition
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Investment in a foreign fund

P&L = A(1)R(1)︸ ︷︷ ︸
‘value at time 1’

− A(0)R(0)︸ ︷︷ ︸
‘value at time 0’

Drivers of profits and losses

x1 = A(1)− A(0) change in fund value

x2 = R(1)− R(0) change in currency value

P&L function

f (x1, x2) = (A(0) + x1)(R(0) + x2)− A(0)R(0)

= x1R(0) + x2A(0) + x1x2

It holds that f (0, 0) = 0.
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Investment in a foreign fund

Taylor decomposition

g1(x) = x1R(0)

g2(x) = x2A(0)

OAT decomposition

g1(x) = x1R(0)

g2(x) = x2A(0)

SU decomposition

g1(x) = x1R(0)

g2(x) = x2A(0) + x1x2

alternative SU decomposition

g1(x) = x1R(0) + x1x2

g2(x) = x2A(0)

ASU decomposition

g1(x) = x1R(0) +
1
2

x1x2

g2(x) = x2A(0) +
1
2

x1x2

OAT decomposition
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Endowment insurance
P&L function

f (x) := (1 + i + x3)
x4

( 1 − qy

1 + i
−

1 − qy − x2 − x1

1 + i + x3

)

SU decomposition (1,2,3,4)

g1(x) = x1

g2(x) = x2
1

1 + i

g3(x) =
1 − qy − x2

1 + i
−

1 − qy − x2

1 + i + x3

g4(x) = x4

( 1 − qy

1 + i
−

1 − qy − x2 + x1

1 + i + x3

)

SU decompositions (3,2,1,4)

g1(x) = x1
1

1 + i + x3

g2(x) = x2
1

1 + i + x3

g3(x) =
1 − qy

1 + i
−

1 − qy

1 + i + x3

g4(x) = x4

( 1 − qy

1 + i
−

1 − qy − x2 + x1

1 + i + x3

)

SU decomposition (4,3,2,1)

g1(x) = x1

g2(x) = x2

g3(x) = x3
1 − qy

1 + i

g4(x) = 0

........
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Endowment insurance

SU (4,3,2,1) and (4,3,1,2) contribution formula

unsystematic mortality risk
(
1{Ty≤1} − q′

y
)
V1

systematic mortality risk
(
q′

y − qy
)
V1

(
q′

y − qy
)
V1

interest rate risk (i ′ − i)(V0 + p) (i ′ − i)(V0 + P0)

time (1 + i ′)S0

Vt := prospective reserve at time t

St := surplus at time t

P0 := premium at time zero
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Intermediate summary

▶ SU decompostion exact, not order invariant.
▶ OAT decomposition is not exact, order invariant.
▶ ASU decomposition is exact, order invariant

The classical contribution formula is a SU decomposition with the update
order

1. time

2. interest rate risk

3. unsystematic & systematic mortality risk
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Example: insurance reporting

Allianz – Group Financial Results 1Q 2023 – Own Funds (EUR bn)

https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/
investor-relations/en/results/2023-1q/en-allianz-analyst-presentation-1Q-2023.pdf

https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/investor-relations/en/results/2023-1q/en-allianz-analyst-presentation-1Q-2023.pdf 
https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/investor-relations/en/results/2023-1q/en-allianz-analyst-presentation-1Q-2023.pdf 
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Axiomatic decomposition concept

Cooperative game theory: Let

f : {0, 1}d → R, f (0, . . . , 0) = 0

be the P&L of a game with d ∈ N players.

Theorem (Shapley, 1953)
There exists a unique decomposition with the following properties:

▶ Exactness: f = g1 + · · ·+ gd

▶ Order invariance: permutation π : {1, . . . d} → {1, . . . d}
f ′(x) = f (xπ(1), . . . , xπ(d)) =⇒ g′

π(k)(x) = gk (xπ(1), . . . , xπ(d))

▶ Additivity: f ′′ = f + f ′ =⇒ g′′
k = gk + g′

k , k ∈ {1, . . . , d}
▶ Dummy neutrality: f (x1, . . . , xd) constant in xk =⇒ gk = 0

This unqiue decomposition is the ASU decomposition.
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Axiomatic decomposition concept

Shapley-Shubik construction: For any given

f : Rd → R, f (0, . . . , 0) = 0

we define the family of games

f x : {0, 1}d → R, f x(z) := f (x1z1, . . . , xd zd), x ∈ R.

(We indeed have f x(0, . . . , 0) = 0. )

Lemma
▶ It holds that f (x) = f x(1, . . . , 1), x ∈ R.
▶ Let (gx

1 , . . . , g
x
d ), x ∈ Rd , be the ASU decompositions of the games f x ,

x ∈ Rd . Then
gk (x) := gx

k (1, . . . , 1), x ∈ R,
is the ASU decomposition of f .
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Axiomatic decomposition concept

Popular belief: “The Shapley axioms uniquely characterize the ASU
decomposition.” Wrong!

The ASU decomposition of a mapping f : Rd → R with f (0, . . . , 0) = 0 is not uniquely characterized by the
following properties:

▶ Exactness: f = g1 + · · · + gd

▶ Order invariance: permutation π : {1, . . . d} → {1, . . . d}
f ′(x) = f (xπ(1), . . . , xπ(d)) =⇒ g′

π(k)(x) = gk (xπ(1), . . . , xπ(d))

▶ Additivity: f ′′ = f + f ′ =⇒ g′′
k = gk + g′

k , k ∈ {1, . . . , d}
▶ Dummy neutrality: f (x1, . . . , xd ) constant in xk =⇒ gk = 0



page 23

Axiomatic decomposition concept

Unique characterization of ASU
▶ Shapley (1953): f : {0, 1}d → R, f (0, . . . , 0) = 0 (4 axioms)
▶ Sprumont (1998), Friedman & Moulin (1999): f : [0,∞)d → R,

f (0, . . . , 0) = 0, monotone & differentiable (5/7 axioms)
▶ Christiansen & Junike (2024): f : Rd → R, f (0, . . . , 0) = 0, Borel

measurable (8 axioms)

Theorem
The ASU decomposition is uniquely characterized by the following properties:

1. Exactness

2. Order invariance

3. Dummy neutrality

4. Linearity (not just Additivity): α, β ∈ R real numbers
f ′′ = αf + βf ′ =⇒ g′′ = αg + βg′

5. Monotonicity: xk 7→ f (x) monotone =⇒ xk 7→ gk (x) monotone

6. Sampling consistency: xn → x real sequence
limn→∞ f (xn) = f (x) and limn→∞ gk (x

n) exists ∀k =⇒ limn→∞ gk (x
n) = gk (x)∀k

7. Approximation consistency: limn→∞ f n = f and limn→∞ gn
k exists ∀k =⇒ limn→∞ gn

k = gk∀k

8. Unit invariance: A = diag(α1, . . . , αd ) diagonal matrix with α1, . . . αd ∈ R \ {0}
f ′(x) = f (Ax) for all x ∈ Rd =⇒ g′

k (x) = gk (Ax) for all x ∈ Rd and k ∈ {1, . . . , d}
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Axiomatic decomposition concept

Unique characterization of ASU
▶ Shapley (1953): f : {0, 1}d → R, f (0, . . . , 0) = 0 (4 axioms)
▶ Sprumont (1998), Friedman & Moulin (1999): f : [0,∞)d → R,

f (0, . . . , 0) = 0, monotone & differentiable (5/7 axioms)
▶ Christiansen & Junike (2024): f : Rd → R, f (0, . . . , 0) = 0, Borel

measurable (8 axioms)

Theorem
The ASU decomposition is uniquely characterized by the following properties:

1. Exactness

2. Order invariance

3. Dummy neutrality

4. Linearity (not just Additivity): α, β ∈ R real numbers
f ′′ = αf + βf ′ =⇒ g′′ = αg + βg′

5. Monotonicity: xk 7→ f (x) monotone =⇒ xk 7→ gk (x) monotone

6. Sampling consistency: xn → x real sequence
limn→∞ f (xn) = f (x) and limn→∞ gk (x

n) exists ∀k =⇒ limn→∞ gk (x
n) = gk (x)∀k

7. Approximation consistency: limn→∞ f n = f and limn→∞ gn
k exists ∀k =⇒ limn→∞ gn

k = gk∀k

8. Unit invariance: A = diag(α1, . . . , αd ) diagonal matrix with α1, . . . αd ∈ R \ {0}
f ′(x) = f (Ax) for all x ∈ Rd =⇒ g′

k (x) = gk (Ax) for all x ∈ Rd and k ∈ {1, . . . , d}
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Intermediate summary

▶ ASU decomposition is the unique decomposition that is
exact, order invariant, dummy neutral, linear, monotone,
sampling consistent, approximation consistent, unit
invariant.



page 26

▶ single time period ✓
▶ multiple time periods
▶ continuous time
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Endowment insurance

Consider an n-year endowment insurance that starts at age y .

Profit and loss at time m

St =
t∏

k=1

(1 + i ′k )︸ ︷︷ ︸
compounding

(
npy

(1 + i)n︸ ︷︷ ︸
premium

−
1{Ty>t}∏t

k=1(1 + i ′k )
n−tpy+t

(1 + i)n−t︸ ︷︷ ︸
expected survival benefit

)

Drivers of profits and losses as trajectories x1, . . . , xd : {0, 1, . . . , n} → R

x1(t)− x1(t − 1) = 1{Ty>t−1}
(
1{Ty≤t} − q′

y+t−1
)

unsystematic mortality risk

x2(t)− x2(t − 1) = 1{Ty>t−1}
(
q′

y+t−1 − qy+t−1
)

systematic mortality risk

x3(t)− x3(t − 1) = i ′t − i interest rate risk

x4(t)− x4(t − 1) = t − (t − 1) time

for t ≥ 1 and x1(0) = x2(0) = x3(0) = x4(0) = 0.
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Endowment insurance

Available information at time t given by t-stopping

x t
k := xk (· ∧ t), k ∈ {1, . . . , d}

It holds that x0
k = 0 for all k , where 0 denotes the zero function.

The profit and loss at time t ∈ {0, . . . , n} can be represented as

St = f (x t
1, . . . , x

t
d)

=
t∏

k=1

(1 + i ′k )
(

npy

(1 + i)n −
1{Ty>t}∏t

k=1(1 + i ′k )

∏n−1
k=t (1 − qy+k )

(1 + i)n−t

)
for the P&L functional f : (R{0,...,n})d → R defined by

f (x1, x2, x3, x4)

=

x4(n)∏
k=1

(1 + i +∆x3(k))
(

npy

(1 + i)n −
n∏

k=1

1 − qy+k−1 −∆x1(k)−∆x2(k)
1 + i +∆x3(k)

)
It holds that f (0, 0, 0, 0) = 0,
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Decomposition problem

Let D := {functions h : N0 → R with h(0) = 0}.

Decomposition problem
For given

▶ time-dynamic drivers x1, . . . , xd ∈ D
▶ a P&L functional f : Dd → R with f (0, . . . , 0) = 0

find P&L contribution functionals g1, . . . , gd : Dd → R such that

f (x t
1, . . . , x

t
d) = g1(x t

1, . . . , x
t
d) + · · ·+ gd(x t

1, . . . , x
t
d) ∀t ∈ N0
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Heuristic decomposition concepts
For simplicity let d = 2.

Sequential updating (SU) decomposition

f (x t
1, x

t
2) = f (x t

1, x
t
2)− f (0, 0)

=
∞∑

k=1

(
f
(
(x t

1)
k ), (x t

2)
k)− f

(
(x t

1)
k−1, (x t

2)
k−1))

=
∞∑

k=1

(
f
(
(x t

1)
k ), (x t

2)
k)− f

(
(x t

1)
k , (x t

2)
k−1)

︸ ︷︷ ︸
=:g2(x t

1,x
t
2)

+
∞∑

k=1

(
f
(
(x t

1)
k ), (x t

2)
k−1)− f

(
(x t

1)
k−1, (x t

2)
k−1)

︸ ︷︷ ︸
=:g1(x t

1,x
t
2)

Properties
▶ exact
▶ order dependent
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Heuristic solutions

For simplicity let d = 2.

One at a time (OAT) decomposition

g1(x t
1, x

t
2) =

∞∑
k=1

(
f
(
(x t

1)
k ), (x t

2)
k)− f

(
(x t

1)
k−1, (x t

2)
k−1))

g2(x t
1, x

t
2) =

∞∑
k=1

(
f
(
(x t

1)
k−1), (x t

2)
k)− f

(
(x t

1)
k−1, (x t

2)
k−1))

Properties
▶ not exact
▶ order invariant
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Heuristic solutions

Averaged sequential updating (ASU) decomposition

... arithmetic average of all variants of the SU decompostions ...

Properties

▶ order invariant

▶ exact

▶ ...
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Endowment insurance

e.g. SU decomposition with update order (4,3,1,2) or (4,3,2,1)

unsystematic mortality risk on (t − 1, t ] 1{Ty>t−1}
(
1{Ty≤t} − q′

y+t−1
)
Vt

systematic mortality risk on (t − 1, t ] 1{Ty>t−1}
(
q′

y+t−1 − qy+t−1
)
Vt

interest rate risk on (t − 1, t ] 1{Ty>t−1}(i ′t − i)(Vt−1 + Pt−1)

time value of money on (t − 1, t ] (1 + i ′t )St−1

Vt := prospective reserve at time t

St := surplus at time t

Pt := premium at time t
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Endowment insurance
e.g. SU decomposition with update order (4,3,1,2) or (4,3,2,1)

unsystematic mortality risk on (t − 1, t ] 1{Ty>t−1}
(
1{Ty≤t} − q′

y+t−1
)
Vt

systematic mortality risk on (t − 1, t ] 1{Ty>t−1}
(
q′

y+t−1 − qy+t−1
)
Vt

interest rate risk on (t − 1, t ] 1{Ty>t−1}(i ′t − i)(Vt−1 + Pt−1)

time value of money on (t − 1, t ] (1 + i ′t )St−1

Vt := prospective reserve at time t

St := surplus at time t

Pt := premium at time t

classical contribution formula, cf. Milbrodt & Helbig (1999, p. 541)
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Intermediate summary

▶ SU / OAT / ASU decompositions have straightforward extensions to
multiple periods

▶ The classical contribution formula is an SU decomposition (order
dependent) with the update order

1. time
2. interest rate risk
3. unsystematic and systematic mortality risk

The ASU decomposition would be order invariant.
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▶ single time period ✓
▶ multiple time periods ✓
▶ continuous time
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Decomposition problem

Let D := {càdlàg functions h : [0,∞) → R with h(0) = 0}.

Decomposition problem
For given

▶ time-dynamic drivers x1, . . . , xd ∈ D
▶ a P&L functional f : Dd → R with f (0, . . . , 0) = 0

find P&L contribution functionals g1, . . . , gd : Dd → R such that

f (x t
1, . . . , x

t
d) = g1(x t

1, . . . , x
t
d) + · · ·+ gd(x t

1, . . . , x
t
d).

Available information at time t given by t-stopping

x t
k := xk (· ∧ t), k ∈ {1, . . . , d}

Note that x0
k = 0, so that

f (x0
1 , . . . , x

0
d ) = f (0, . . . , 0) = 0.
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Heuristic decomposition concepts

Let T = {0 = t0 < t1 < · · · } be a time grid with tn → ∞.

SU decomposition with respect to T

g1(x1, x2) =
∞∑

k=1

(
f (x tk

1 , x tk−1
2 )− f (x tk−1

1 , x tk−1
2 )

)
g2(x1, x2) =

∞∑
k=1

(
f (x tk

1 , x tk
2 )− f (x tk

1 , x tk−1
2 )

)

▶ exact
▶ order dependent
▶ time grid dependent
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Heuristic decomposition concepts

Let T = {0 = t0 < t1 < · · · } be a time grid with tn → ∞.

OAT decomposition with respect to T

g1(x1, x2) =
∞∑

k=1

(
f (x tk

1 , x tk−1
2 )− f (x tk−1

1 , x tk−1
2 )

)
g2(x1, x2) =

∞∑
k=1

(
f (x tk−1

1 , x tk
2 )− f (x tk−1

1 , x tk−1
2 )

)

▶ not exact
▶ order invariant
▶ time grid dependent



page 40

Heuristic decomposition concepts

Let T = {0 = t0 < t1 < · · · } be a time grid with tn → ∞.

ASU decomposition with respect to T

... arithmetic average of all variants of the SU decompostions ...

▶ order invariant
▶ exact
▶ time grid dependent
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Heuristic decomposition concepts

Infinitesimal sequential updating (ISU) decomposition

ISU = lim
|T |→0

SUT

Infinitesimal one at a time updating (IOAT) decomposition

IOAT = lim
|T |→0

OATT

Infinitesimal average sequential updating (IASU) decomposition

IASU = lim
|T |→0

ASUT

▶ time grid invariant provided that the limits exist
▶ the other properties still hold
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Example

Consider the case

f (x t
1, x

t
2) = x1(t)x2(t), t ∈ [0, 1].

▶ For T1 = N0 we get the ASU decomposition

g1(x1
1 , x

1
2 ) =

x1(1)x2(1)
2

g2(x1
1 , x

1
2 ) =

x1(1)x2(1)
2

▶ For T2 = {k/2 : k ∈ N0} we get the ASU decomposition

g1(x1
1 , x

1
2 ) =

x1(0.5)x2(0.5)
2

+ (x1(1)− x1(0.5))
x2(0.5) + x2(1)

2

g2(x1
1 , x

1
2 ) =

x1(0.5)x2(0.5)
2

+
x1(0.5) + x1(1)

2
(x2(1)− x2(0.5))

The ASU decomposition depends on the choice of the grid.
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Example

▶ For Tn = {k/n : k ∈ N0} we get the ASU decomposition

gn
1 (x

1
1 , x

1
2 ) =

n∑
k=1

(x1(k/n)− x1((k − 1)/n))
x2((k − 1)/n) + x2(k/n)

2

gn
2 (x

1
1 , x

1
2 ) =

n∑
k=1

x1((k − 1)/n) + x1(k/n)
2

(x2(k/n)− x2((k − 1)/n))

▶ If x1, x2 are differentiable, then we get the IASU decomposition

f (x1
1 , x

1
2 ) = x1(1)− x2(1)

= lim
n→∞

gn
1 (x

1
1 , x

1
2 ) + lim

n→∞
gn

2 (x
1
1 , x

1
2 )

=

∫ 1

0
x2(t)dx1(t) +

∫ 1

0
x1(t)dx2(t)

exact, order invariant, time grid invariant
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Endowment insurance

Consider an n-year endowment insurance that starts at age y .

Profit and loss at time m

St = e
∫ t

0 ϕ′(u)du︸ ︷︷ ︸
compounding

(
e−

∫ t
0 µ(y+u)du

(1 + i)n︸ ︷︷ ︸
premium

−
1{Ty>t}

e
∫ t

0 ϕ′(u)du

e−
∫ t

0 µ(y+u)du

(1 + i)n−t︸ ︷︷ ︸
expected survival benefit

)

Drivers of profits and losses as trajectories x1, . . . , xd : {0, 1, . . . , n} → R

dx1(t) = dN(t)− 1{Ty≥t}µ(y + t)dt unsystematic mortality risk

dx2(t) = 1{Ty≥t}
(
µ′(y + t)− µ(y + t)

)
dt systematic mortality risk

dx3(t) =
(
ϕ′(t)− ln(1 + i)

)
dt interest rate risk

dx4(t) = dt time

for t > 0 and x1(0) = x2(0) = x3(0) = x4(0) = 0.
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Endowment insurance

Available information at time t given by t-stopping

x t
k := xk (· ∧ t), k ∈ {1, . . . , d}

It holds that x0
k = 0 for all k , where 0 denotes the zero function.

The profit and loss at time t ∈ {0, . . . , n} can be represented as

St = f (x t
1, . . . , x

t
d)

= e
∫ t

0 ϕ′(u)du
(

e−
∫ t

0 µ(y+u)du

(1 + i)n −
1{Ty>t}

e
∫ t

0 ϕ′(u)du

e−
∫ t

0 µ(y+u)du

(1 + i)n−t

)
for the P&L functional f : (R{0,...,n})d → R defined by

f (x1, x2, x3, x4) = e
∫ x4(n)

0 x3(u)du
(

npy

(1 + i)n − e−
∫ n

0 (µ(y+u)+x1(u)+x2(u))du

e
∫ n

0 (ϕ(u)+x3(u))du

)
It holds that f (0, 0, 0, 0) = 0.
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Endowment insurance

SU decomposition for any update order

unsystematic mortality risk at t Vt
(
dN(t)− 1{Ty≥t}µ

′(y + t)dt
)

systematic mortality risk at t Vt 1{Ty≥t}
(
µ′(y + t)− µ(y + t)

)
dt

interest rate risk at t Vt 1{Ty≥t}
(
ϕ′(t)− ln(1 + i)

)
dt

time value of money at t St ϕ
′(t)dt

Vt := prospective reserve at time t

St := surplus at time t
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Conjecture: “The IASU decomposition is order invariant.” Wrong!

Let x1 and x2 be paths of two Brownian motions and

f (x t
1, x

t
2) = x1(t)x2(t).

ISU decomposition with update order (1,2)

g1(x t
1, x

t
2) =

∫ t

0
x2(u)dx1(u)

g2(x t
1, x

t
2) =

∫ t

0
x1(u)dx2(u) + [x1, x2](t)

IASU decomposition

g1(x t
1, x

t
2) =

∫ t

0
x2(u)dx1(u) +

1
2
[x1, x2](t)

g2(x t
1, x

t
2) =

∫ t

0
x1(u)dx2(u) +

1
2
[x1, x2](t)
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Axiomatic decomposition concept

Theorem (Christiansen & Junike, 2025)
For a “large class” of P&L functionals, the IASU decomposition is the only
decomposition with the following properties:

1. Exactness

2. Order invariance

3. Dummy neutrality

4. Linearity

5. Monotonicity

6. Sampling consistency

7. Approximation consistency

8. Unit invariance

9. Non-anticipativeness
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Investment in a foreign fund

P&L = A(t)R(t)︸ ︷︷ ︸
‘value at time t’

− A(0)R(0)︸ ︷︷ ︸
‘value at time 0’

Drivers of profits and losses

x1(t) = A(t)− A(0) change in fund value

x2(t) = R(t)− R(0) change in currency value

P&L functional

f (x t
1, x

t
2) = (A(0) + x1(t))(R(0) + x2(t))− A(0)R(0)

= x1(t)R(0) + x2(t)A(0) + x1(t)x2(t)

It holds that f (0, 0) = 0.

IASU decomposition for semimartingales A and R

f (x t
1, x

t
2) =

(
x1(t)R(0) +

∫ t

0
x2(u)dx1(u) +

1
2
[x1, x2](t)

)
+

(
x2(t)A(0) +

∫ t

0
x2(u)dx1(u) +

1
2
[x1, x2](t)

)
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Intermediate summary

▶ ISU / IOAT / IASU decompositions extend discrete-time concepts to
continuous time and are time grid invariant

▶ ISU decomposition often order invariant if the drivers have zero
covariation, but in general order dependent
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▶ single time period ✓
▶ multiple time periods ✓
▶ continuous time ✓

▶ curse of dimensionality
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Computational effort

▶ (I)SU decomposition: O(d)
▶ (I)ASU decomposition: O(2d−1d)

d 2d−1d
1 1
2 2
3 6
4 16
5 96
6 224
7 512
...

...
20 10.485.760
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2SU Approximation

........


