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Motivation

• Transition towards a low-carbon economy requires major transformations in

every industry sector

• A company’s large carbon footprint can pose a threat to its share price due

to stranded assets (cf. [van der Ploeg and Rezai, 2020],

[Curtin et al., 2019])

• Investors want to limit the carbon risk of their portfolio

• According to [BlackRock, 2023] 46% of institutional investors surveyed

ranked “navigating the transition to a low-carbon economy” as their top

investment priority

• Companies often try to reduce their carbon footprint, and investors also

want to tighten the carbon risk limit over time
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Notation

• [0,T ]: Time span considered by the investor

• Bt , S
g
t , S

b
t : Price of risk-free, green and brown asset at time t ∈ [0,T ]

• πt = (πg
t , π

b
t )

⊤: Fractions of wealth invested in the green and brown asset

• X π
t : Wealth of the investor at t when following the strategy π

• Ct = (Cg
t , Cb

t )
⊤: Carbon risk at time t

• C̃t : Maximum carbon risk the investor is willing to take with her portfolio
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Model setup

• Financial market with one risk-free, two risky assets (“green” and “brown”)

which follow the dynamics

dBt = rBtdt

dSg
t = µgS

g
t dt + σgS

g
t dW

1
t , Sg

0 > 0,

dSb
t = µbS

b
t dt + σbS

b
t

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, Sb

0 > 0.

• We assume, that company i ∈ {g , b} reduces its carbon risk according to

C i
t = C i

0 exp (−δi t) .

• Similarly, the carbon risk the investor is willing to take decreases by

C̃t = C̃0 exp
(
−δ̃t

)
.
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Model setup

• For t ∈ [0,T ] the investor seeks to

(i) maximize the expected terminal utility

(ii) while limiting the carbon risk of the portfolio at time t to C̃t
• At time t ∈ [0,T ] and with current wealth x > 0 the investor tries to find

V (t, x) := sup
π

E(t,x) [U (X π
T )] (1)

=: sup
π

J (t, x , π) (2)

for her utility U : (0,∞) → R.
• Results in optimization problem

sup
π

J (t, x , π)

s.t. C⊤
t πt ≤ C̃t . (3)
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Optimal portfolio

Theorem (Solution to optimization problem for power/logarithmic utility)

Let C̃t be the carbon risk level at time t, t ∈ [0,T ] which the investor does not

want to exceed with her portfolio. Then the optimal portfolio process is given by

πC
t =

π∗
t −

C⊤
t π∗

t −C̃t
Ct⊤(σσ⊤)

−1
Ct

(
σσ⊤)−1 Ct if C⊤

t π
∗
t > C̃t

π∗
t else

where

π∗
t =

 1
1−γ

(
σσ⊤)−1

(µ− r1) γ ≥ 0, γ ̸= 1(
σσ⊤)−1

(µ− r1) γ = 1

is the optimal portfolio process from the unconstrained optimization problem for

the power utility and the special case of a logarithmic utility (γ = 1).
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Value function

Theorem (Solution to optimization problem for power/logarithmic utility

continued)
The value function is given by

V (t, x) =
1

1− γ
x1−γ exp

(
−(1− γ)

∫ T

t

r +
(
πC
u

)⊤
(µ− r1)− 1

2
γ
(
πC
u

)⊤
σσ⊤πC

udu

)
for γ ≥ 0, γ ̸= 1 and by

V (t, x) = x +

∫ T

t

r +
(
πC
u

)⊤
(µ− r1)− 1

2

(
πC
u

)⊤
σσ⊤πC

udu

for γ = 1.
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Optimal portfolio

For C⊤
t π

∗
t > C̃t the investments in the green and brown asset shall be adjusted to

(πg
t )

C
= (πg

t )
∗ − κ

(
σ2
bC

g
t − σgσbρCb

t

)
(4)(

πb
t

)C
=

(
πb
t

)∗ − κ
(
σ2
gCb

t − σgσbρCg
t

)
, (5)

where

κ =
Cg
t (π

g
t )

∗
+ Cb

t

(
πb
t

)∗ − C̃t
σ2
b (C

g
t )

2 − 2σgσbρCg
t Cb

t + σ2
g

(
Cb
t

)2 .
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Observations

(i) Since −1 ≤ ρ ≤ 1 and Cπ∗
t = Cg

t (π
g
t )

∗
+ Cb

t

(
πb
t

)∗
> C̃t , it follows that

κ > 0.

(ii) In the case of two uncorrelated shares, the term in the parentheses is greater

than zero (c.f. (4) and (5)), i.e. the carbon constraint causes a reduction in

the fractions invested into both shares compared to the unconstrained case.

(iii) The green investment will be increased compared to the unconstrained case,

if

Cg
t <

σg

σb
ρCb

t .

(iv) The fraction invested into the brown asset will be increased if

Cb
t <

σb

σg
ρCg

t .
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Example

Figure 1: The carbon constraint leads to an undesirable effect!

Parameters: µg = 0.025, µb = 0.035, σg = 0.15, σb = 0.4, ρ = 0.7, r = 0.01,T = 10, Cg
0 = 3, Cb

0 = 3.5, C̃0 = 1.5, δg = δb = 0.1, δ̃ = 0.3
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Permissible portfolios under carbon constraint
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Permissible portfolios under additional constraints
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Optimal portfolio under additional constraints

Since

πg
t ≥ (πg

t )
∗ ⇒ πb

t ≤
(
πb
t

)∗
,

we include the constraint on the green asset and receive the new optimization

problem

sup
π

J(t, x , π)

s.t. C⊤
t πt ≤ C̃t ,

πg
t ≥ (πg

t )
∗
. (6)

To simplify the notation in the following proposition, we define

π̄C
t :=

C⊤
t π

∗
t − C̃t

Ct⊤ (σσ⊤)−1 Ct

(
σσ⊤)−1 Ct .
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Optimal portfolio under additional constraints

Proposition

The optimal portfolio at time t, t ∈ [0,T ] for problem (6) is given by

(πg
t )

C
=

(πg
t )

∗ − (π̄g
t )

C
if C⊤

t π
∗
t > C̃t and (π̄g

t )
C ≤ 0,

(πg
t )

∗
else,

(
πb
t

)C
=


C̃t−Cg

t (πg
t )

∗

Cb
t

if C⊤
t π

∗
t > C̃t and (π̄g

t )
C
> 0,(

πb
t

)∗ − (
π̄b
t

)C
if C⊤

t π
∗
t > C̃t and (π̄g

t )
C ≤ 0,(

πb
t

)∗
else,

where π∗ again denotes the optimal portfolio process from the unconstrained

optimization problem.
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Conclusion

• Aim to limit the carbon risk in an investor’s portfolio

• Solve the optimization problem analytically for power/logarithmic utility

• Find conditions, which tell when the investment in the green asset increases

compared to the unconstrained case

• Possible, that carbon constraint leads to increased investment in the brown

asset

• See preprint for: Comparison of optimal portfolio under carbon intensity

constraint and under BGS constraint
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Carbon metrics

1. Carbon emissions: carbon risk rises with quantity of emissions, but larger

companies tend to emit more carbon

2. Carbon intensity: set emissions in relation to size of the company by

dividing by its revenue (or other appropriate variable)

3. Brown-Green-Score (BGS): introduced by [Görgen et al., 2020], assesses

a company’s carbon risk based on the three dimensions value chain, public

perception and adaptability:

BGSt = 0.7 · vt + 0.15 · pt + 0.15 · at
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Comparison of carbon intensity and BGS

Theorem (Solution to optimization problem under BGS constraint)
For

π̄CI
t :=

CI⊤
t π

∗
t − C̃It

CI⊤
t (σσ⊤)−1 CIt

(
σσ⊤)−1 CIt

and

C̃Isc

t :=
˜CIt − CIg

t 1π
∗
t

CIb
t − CIg

t

we can rewrite the optimal portfolios under the carbon intensity constraint
(
πCI)

and under the BGS constraint
(
πBGS) as

πCI
t = π∗

t − π̄CI
t

and
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Comparison of carbon intensity and BGS

Theorem (Solution to optimization problem under BGS constraint

continued)

(πg
t )

BGS
= (πg

t )
∗ − κ1

t

(
π̄g
t

)CI − κ3
t

(
σ2
bBGS

g
t − σgσbρBGSb

t

)
+κ2

t

(
σ2
b

(
(0.7CIg

t )/(CIb
t − CIg

t )− 0.15 (pgt + agt )
)

− σgσbρ
(
(0.7CIg

t )/(CIb
t − CIg

t − 0.15
(
pbt + abt

)) )
,(

πb
t

)BGS
=

(
πb
t

)∗ − κ1
t

(
π̄b
t

)CI − κ3
t

(
σ2
gBGSb

t − σgσbρBGSg
t

)
+κ2

t

(
σ2
g

(
(0.7CIg

t )/(CIb
t − CIg

t − 0.15
(
pbt + abt

))
− σgσbρ

(
(0.7CIg

t )/(CIb
t − CIg

t )− 0.15 (pgt + agt )
) )
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Comparison of carbon intensity and BGS

Theorem (Solution to optimization problem under BGS constraint

continued)
where

κ1
t =

0.49(
CIb

t − CIg
t

)2 ·
σ2
b (CI

g
t )

2 − 2σgσbρCIg
t CIb

t + σ2
g

(
CIb

t

)2
σ2
b (BGS

g
t )

2 − 2σgσbρBGSg
t BGSb

t + σ2
g

(
BGSb

t

)2 ,
κ2
t =

0.7

CIb
t − CIg

t

·
CIg

t (π
g
t )

∗
+ CIb

t

(
πb
t

)∗ − C̃It

σ2
b (BGS

g
t )

2 − 2σgσbρBGSg
t BGSb

t + σ2
g

(
BGSb

t

)2 ,
κ3
t =0.15 ·

(pgt + agt )
⊤
(πg

t )
∗
+
(
pbt + abt

)⊤ (
πb
t

)∗ − (p̃t + ãt)

σ2
b (BGS

g
t )

2 − 2σgσbρBGSg
t BGSb

t + σ2
g

(
BGSb

t

)2 ,
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Comparison of carbon intensity and BGS

Theorem (Solution to optimization problem under BGS constraint

continued)
and ˜BGS t = 0.7ṽt + 0.15p̃t + 0.15ãt is the limit the BGS of the Portfolio shall

not exceed at time t ∈ [0,T ]. Further,

π∗
t =

 1
1−γ

(
σσ⊤)−1

(µ− r1) γ ≥ 0, γ ̸= 1(
σσ⊤)−1

(µ− r1) γ = 1

is the optimal portfolio process from the unconstrained optimization problem for

the power utility and the special case of a logarithmic utility (γ = 1).
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Observations

(i) It holds κ1
t , κ

2
t > 0. Further it is κ3

t > 0 if (pt + at)
⊤π∗

t > p̃t + ãt

(ii) Due to the many terms in the optimal portfolio process πBGS , it is not

possible to specify a simple condition under which the green investment

increases. Taken together, the conditions

σbCIg
t < σgρCIb

t ,

σb (p
g
t + agt ) < σgρ

(
pbt + abt

)
,

σb > σgρ

are sufficient for an increasing investment in the green asset. Note, that this

condition is sufficient but not necessary.
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Observations

(iii) Similarly, the conditions

σgCIb
t < σbρCIg

t ,

σg

(
pbt + abt

)
< σbρ (p

g
t + agt ) ,

σg > σbρ

are sufficient for a decreasing brown investment.

(iv) Note that the conditions for the BGS constraint to increase the green

investment are not necessarily stricter than the one for the carbon intensity

constraint. As the conditions are sufficient but not necessary, overfulfillment

of a condition can compensate for not fulfilling the other ones. Since the

BGS consists of several components, only the BGS as a whole counts, not

the individual components.
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Proof Theorem 1

If the investor evaluates the utility of her assets according to the log-utility, the

expected value to be optimized results in

E [ln (X π
T )] = E

[
ln(x) +

∫ T

0

(
r + π⊤

u (µ− r1)− 1

2
π⊤
u σσ

⊤πu

)
du +

∫ T

0

π⊤
u σdWu

]

= ln(x) + rT +

[∫ T

0

(
π⊤
u (µ− r1)− 1

2
π⊤
u σσ

⊤πu

)
du

]
.

In order to maximize the expected utility of the final wealth, it suffices to

maximize the integrand pointwise in t and ω.
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Proof Theorem 1

As Lagrange function we get

L (πt , λt) =π⊤
t (µ− r1)− 1

2
π⊤
t σσ

⊤πt − λt

(
C⊤
t πt − C̃t

)
.

The stationary condition yields

d

dπt
L (πt , λt) = (µ− r1)− σσ⊤πt − λtCt

!
= 0

⇔ +σσ⊤πt − (µ− r1− λtCt) = 0. (7)
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Proof Theorem 1

By the complementary slackness condition have

λt

(
C⊤
t πt − C̃t

) !
= 0

⇔ C⊤
t πt − C̃t = 0. (8)

since we do not consider λt = 0. Combining both equations yields

πC
t = π∗

t −
Cπ∗
t − C̃t

C⊤
t (σσ⊤)−1 Ct

(
σσ⊤)−1 Ct (9)

as a candidate for the optimal portfolio process. Due to σg , σb > 0 it holds that

d

d2πt
L (πt , λt) = σσ⊤ < 0

and πC
t indeed maximizes the optimization problem.
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