Categories
- ACTUARIAL DATA SCIENCE
- AFIR / ERM / RISK
- ASTIN / NON-LIFE
- BANKING / FINANCE
- DIVERSITY & INCLUSION
- EDUCATION
- HEALTH
- IACA / CONSULTING
- LIFE
- PENSIONS
- PROFESSIONALISM
- THOUGHT LEADERSHIP
- MISC
ICA LIVE: Workshop "Diversity of Thought #14
Italian National Actuarial Congress 2023 - Plenary Session with Frank Schiller
Italian National Actuarial Congress 2023 - Parallel Session on "Science in the Knowledge"
Italian National Actuarial Congress 2023 - Parallel Session with Lutz Wilhelmy, Daniela Martini and International Panelists
Italian National Actuarial Congress 2023 - Parallel Session with Kartina Thompson, Paola Scarabotto and International Panelists
1468 views
0 comments
0 likes
22 favorites
Machine learning techniques are now more and more popular in the insurance industry and have a lot of applications such as, pricing, reserving, claims management and underwriting among others. Whereas the advanced techniques usually have a better predictive power than statistical models e.g. Generalized Linear Models, their main drawback is that they are black-box and their results are difficult to understand/interpret which doesn’t always provide sufficient comfort to take business decisions.
In this webinar, we introduce some model interpretability tools and describe how they can be used to boost insights from data in insurance applications, thanks to adequate features selection, features engineering and results interpretation. These interpretability tools make the use of machine learning techniques much more relevant in insurance as it allows to improve the predictive power while understanding the drivers of the results; which is fundamental to take relevant business decisions.
0 Comments
There are no comments yet. Add a comment.